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ABSTRACT

A VLSI architecture for computing the discrete Fourier transform (DFT) using the Wino-

grad Fourier transform algorithm (WFTA) is presented. This architecture is an address-

less, routed, bit-serial scheme that directly maps an N-point algorithm onto silicon. The

architecture appears to be far less costly than systolic schemes for implementing the

WFTA, and faster than current FFT devices for similar transform sizes. The nesting

method of Winograd is used for partitioning larger transformations into several circuits.

The advantage of this partitioning technique is that it allows using circuits that are all of

the same type. However, the number of input/output pins of each circuit is higher than

with some other approaches like, for example, the prime factor algorithm. The design of

a 20-point DFT circuit with logic diagrams of its major cells is presented. The gate array

circuit has been sent for fabrication in a 0 .7pfo CMOS technology. Five circuits intercon-

,,ected together will compute 60-point complex'transfo.rms at a rate of one transformatiotI

everv 0.53/*s.

RESUME

1;ne architecture VLSI pour le calcul de ]a transformation discrete de Fourier en utilisanit

I'algorithme de transformation de Fourier de Winograd (ATFW) est pr(sent6e. Cette

architecture est un arrangement rout6, bit-s~riel, et sans adresses qui transpose directe-

nent tin algorithme de taille donn~e sur silicium. L'architecture s'avbre &tre beaucoup

11i,is coiteuse que les syst~mes systoliques pour implanter I'ATFW, et plus rapide quIe les

dispositifs courants de transformation rapide de Fourier pour des longueurs de traus'or-

[nation comparables. La m6thode de "tissage" de Winograd est utilis(e pour fragnienter

des transformations plus longues sur plusieurs circuits distincts. L'avantage de cette

technique de fragmentation est qu'elle permet d'utiliser des circuits tous du m6me type.

C'ependant, le nombre de broches d'entr6e/sortie de chaque circuit est plus .lev6 qu'avec

d'atires approches comme, par exemple, l'algorithme de factorisation premier. La con-

ception d'un circuit de transformation discrete de Fourier pour 20 points est preseiit.e.

aver- des diagrammes logiques pour ses principales cellules. Le circuit a 6t6 soumis Po1r

[abrication avec ine matrice de portes dana un procdd6 CMOS de .7lan. (inq (i(lCiis

iili('rconnectes ensemble pourront calculer des transformations complexes (e 60 points it

muwt' vitesse de une transformation k toutes les 0.53--
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EXECUTIVE SUMMARY

Electronic warfare systems rely more and more on the development of digital processing

to increase their signal handling capability. This trend stems in good part from the

convenience and low cost of semiconductor devices and the emergence of very large scale

integration (VLSI) systems. The object of this research is to investigate new means of

computing the discrete Fourier transform (DFT) at very high speed using VLSI circuits.

The discrete Fourier transformation is a widely used algorithm for qwitching between the

I line and frequency representations of sampled waveforms.

The performance of DFT circuits and boards is determined by the transforma-

tion algorithm and by the architecture used to implement the algorithm. In commercial

pro(lucts, the algorithm and architecture are chosen for their flexibility, in an attempt to

facilitate many applications. Practically all commercial devices use the FFT algorithm,

which allows varying the transform size N across a wide range of values and implenenting

the division by N of the inverse transformation with an inexpensive bit shift.

Unfortunately, commercial DFT circuits and boards don't deliver the through-

puts that are needed in many electronic warfare applications. Higher throughputs can be

obtained by using several DFT processors in parallel, but this generally leads to coml)i-

cared and expensive implementations, which are limited by the need for multiplexers and

deiitiltiplexers, increased bulk, lower reliability, and higher power consumption.

This report presents a DFT architecture aimed at applications where DFTs

must be computed at very high speeds, and where the number of points N is fixed an(l

not too large. typically a few hundreds or less. This architecture is not based oil the

FFT. Instead it uses an algorithm that was invented by Winograd in 1976. The lViuoqrmd

Iot,'ier transform algorithm (WFTA) computes the same transformation as the FFT. an(1

uses fewer multitplications. In the proposed architecture, an N-point WFTA is mappe(I

(irectly onto a VLSI circuit using an addressless, bit-serial scheme. The smaller number

of multiplications yields silicon area savings which can be traded for a higher throughput

or a larger transform size N. Due to the complicated indexing scheme of the WFTA.

the layout requires substantial routing between its arithmetic cells and the architecture

is calle(l routed.

If a layout turns out to be too large to fit on a single circuit, the architect ire

Cai(, be partitioned into several identical circuits using the nesting method. The iicst.lig

method has also been invented by Winograd. As higher length algorithms are construct.0.

the nesting method uses less multiplications than other construction algorithms. inhil(lig

the prime factor algorithm.

v



To validate the routed architecture and the partitioning strategy, a VLSI circuit

has been designed at DREO and sent to a silicon foundry. The CMOS circuit contains

55 000 gates and can compute by itself 20-point complex DFTs. The nesting method allows

the interconnection of five circuits to compute 60-point complex DFTs. Assuming 16-bit

input samples, the predicted speed of 1.8 million transformations per second is about

three to ten times higher than that of commercial chip sets*. In the prototype circuit, the

adders have been organized in layers and interconnected by software. The 18 multipliers

have been carefully designed to minimize their gate count without compromising their

speed and accuracy. The circuit can accept samples of any precision in fixed-point two's

complement format, and output coefficients with up to 10 bits of accuracy.

The Air Force Institute of Technologyin in Dayton, Ohio, is also developing

Winograd Fourier transform circuits. At this time, 15-, 16-, and 17-point DFT circuits

ire being designed and tested. The three full-custom circuits are slightly slower than the

DR EO gate array, but they are more accurate because their multipliers have more stages.

The three circuits are meant to be interconnectcd using the prime factor algorithmn to

forn part of a 4080-point DFT machinet.

The WFTA and the routed architecture are not without disadvantages. First, as

the transform size is increased, the routing gradually grows and may become impractical

to handle. Second, the complex indexing scheme of the WFTA restrains the flexibility

with respect to N. Lastly, the WFTA favors using values of N that are not powers of 2:

hence the division by N appearing in the inverse transformation does not reduce to a bit

shift like in the FFT.

The WFTA should not be viewed as a replacement for the FFT, but rather

as a complementary algorithm with its own advantages and inconveniences, which may

find use in different applications. The WFTA and the routed architecture are attractive

for applications requiring high throughput, cost effective DFT computation for moderate

transform sizes. For instance, the routed architecture is currently being considered at

D IEO for processing radar pulses in real-time upon interception by radar electronic

sii pport measures (ESM) systems.

*,rhe fastest available chip set. t.o the authnrs' knnwledgP. is marn !factlred by Honeywell an, cuitsijt.,

(,t 12 GaAs clrcuits.
t'Ilw authors whish to thank Mark A. Mehalic, AFIT, for the information provided.
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1.0 INTRODUCTION

The introduction by Winograd [1],[2], and Agarwal and Cooley [3], of new, short length

discrete Fourier transformation algorithms requiring fewer multiplicatiops than the fast

Fourier transform [4],[5] stirred interest in the signal processing community. In comibina-

tion with his high speed algorithms, Winograd proposed a nesting method for constructing

algorithms of higher lengths. The algorithms obtained by means of this nesting method

are known as Winograd Fourier transform algorithms (WFTA) [6].

Another method, which is based on the Good-Thomas prime factor algorithm

(l)VA) [7],[81, has been proposed by Kolba and Parks [9] for computing long discrete

Fourier transforms with Winograd's short length algorithms. The PFA and nesting tneth-

()ls can be combined, making it possible to obtain in-place and in-order algorithms [101.

I lowever, only the nesting method of Winograd is considered in this report, mostly bccause

it minimizes the number of multiplications.

Apart from their theoretical value, which was immediately recognized, \Vino-

graid's algorithms have found very few applications since their introduction. One of the

tinderlying difficulties with these algorithms is that their additions are nested in a com!pli-

cated and irregular manner. Early results showed that WFTA software sometimes ruiis

taster, or slower, than the FFT on computers like the IBM 370 [61.[911)-[1.). V"ariou.

hardware architectures for the WFTA and its variants have been proposed, but, to the

authors' knowledge, none has been demonstrated using a complete prototype. As a result.

the VFT is still considered as the algorithm of choice in the practical world.

The widespread perception that Winograd's algorithms do not lend themselves

well to either hardware or software realizations is now being challenged. The change stems

from the emergence of new computer architectures, higher component densities on VLSI

circulits, and more powerful compilers and computer-aided design tools. For instance, LIu.

(ooley and Tolinievri have recently shown [15] that variants of the \VFTA can (exe'clte

Imore effciently than the FFT on RISC' computers having a -floating-point multiply-add"

e'ature. Aloisio et a. have implemented the PFA on hypercube computers [16]..At this

timue, the Air Force Institute of Technology is developing 15-. 16-. and 17-point \V'TA

iltcgrate(l circuits [17].[18]'.

The argument for using the WFTA instead of the FFT in high-speed VLSI ro-

alizations is simple. Since the WFTA requires fewer multiplications than the FFT. and

'After work on the present report was well tmder way, the authors becarne ac(iainted with the A lIT
Irpiet and were pleasantly surprised by the similarities between the AFIT and DREO circuis.



multipliers in VLSI are very expensive2 , the WFTA should yield smaller, more cost-

efr "'N VLSI realizations. Figure 1 shows the minimum number of multiplications in the
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['igure l: Number of non-trivial real multiplications in the FFT and Winograd algorlitlihs
as a function of the number of points N.

VIFTA and FF1'. as a function of the number of points N. It is easily verified that the

WFTA requires two to three times fewer multiplications than the FFT for N > 60. The

difference increases with N, as the WFTA requires a number of multiplications propor-

tional to N, while for the FFT the proportionality is to N log(N) [20]. The number o

additions remains approximately the same.

In this report, we examine the implementation of the WFTA in VLSI form for the

high-speed calculation of moderate length (less than a few hundred points) discrete Fourier

tranrsfoirms. We propose a new VLSI architecture with detailed designs of its ditlecrenit

hardware cells. To put this in perspective, a quick review of some of the architectures

proposed in the past is useful. In 1980, Zohar [21] proposed running the VFTA otn a

dedicated. address-based machine with one multiplier and two adders. In 1982. Ward and

2\ CIOS multiplier of length 1h bits typically contains about 2 1b times more gates than an add(r.
'In Fig. 1, !w number of arithmetic operations in the radix-2 FFT has been reduced by exploiting

the svinmetries in the sine and cosine functions, and by implementing the complex multiplication.i with
thrt,, real m,,ltiplitations and three real additions. The complex multiplication algorithm with thir-re rc,
uulriplications can he fomnd in [19. Sect. :1.7.21



Stanier [221 designed a systolic architecture for the WFTA; such architectures produce

regular layouts and allow very high clock rates [23],[24]. Then, in 1983, MacLeod and

Bragg [25] suggested directly mapping the algorithm's data flow onto hardware, using

bit-serial arithmetic. In 1985, Costello [26] compared the PFA to other techniques for

radar beam forming and concluded that the former was much cheaper to implement with

dedicated hardware. At about the same time, Ward, McCanny, and McWhirter [2,],[28],
and shortly after, Owens and Ja'Ja [291, introduced more systolic architectures for the

WFTA. Lastly, in 1988, Linderman et al. [18] presented the design of three full-custom

WFTA circuits destined for a 4080-point PFA realization. The operations in the circuits

are carried out bit-serially, while the data transfers between the circuits and the main

unemory are bit-parallel.

Pursuing the idea of MacLeod and Bragg, we propose an addressless, bit-serial

architecture that directly maps the WFTA of interest onto a VLSI circuit. Probing further.

we examine in detail the hardware cells and their interconnections, and actually provide

the specifications of a 20-point WFT circuit that has been sent for fabrication in a 0.7 /Im

"gate arrav" CNMOS technology'. We found that for implementing the WFTA, an approach

like MacLeod and Bragg's yields the same performance as a systolic architecture, but at a

lowem cost [:30]. A 20-point WFT circuit. for example, contains about 17 000 gates alld its

on a. moderately large gate array. By comparison, the systolic architecture of Ward L aL.

would require 300000 gates4 and a much larger die size. Hence, the layout of our circuit

ends up being more compact, despite some irregular portions having complicated routing.

From a design effort standpoint, the 20-point WFT circuit's schematics were manually

entered in the chip manufacturer's design system in seven man-weeks. Interconnecting

the adders took only a small portion of that time. As early as next year, some chip

manufacturers will add to their design software sets a "logic synthesis" tool that will

lirectlv read logic specifications, and eliminate the error-prone and often tedious task of

drawing the schematics'. This will make routed architectures more attractive in gmieral.

The novelty of the proposed architecture lies at the system level, where the

WFT circuits exchange data for computing discrete Fourier transforms of higher lengths.

Instead of relying on the standard PFA for partitioning the transformation, \we took

\Vinograd's nesting method. This allowed us to design a 20-point WFT circuit such that

by assembling five devices, they can compute 60-point transforms6 . Including this feat ure

'Sei' Section 7.0 for gate count equations.
'l'he authors are grateful to A. Boubguira. LSI Logic Co. of Canada, for the information provided.
Another possibility, in fact, would be to use a single device five times in succession. This discwsion

ignores the possible' reduction in hardware which can be obtained for lower transformation rates.
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in the 20-point WFT circuit increased the gate count by 16%7 and added 80 pins to the

package. The advantage of this approach is that it can be implemented with circuits

all of the same type. Also, the number of multipliers that are used is always kept to a

minimum, thus as higher density processes become available, a multi-circuit configuration

catn be directly combined to fit on a single integrated circuit. The disadvantage of tile

approach is that it requires more pins than the PFA for inter-circuit data exchanges.

This is the price for minimizing the number of multipliers in the data path and for using

circuits that are identical.

Table 1: Comparison of the proposed WFTA architecture to commercial FFT devices..

Device(s) Circuit Clock N Throughput FI: >;ui'e
Count Rate (samples/s) of Merit

L6,1280/81 (LSI Logic)* [31] 3 40MHz 64 4.3 x 106 1.4
A41102 (Austek Microsystems) [32] 1 40MHz 64 2.5 x 10' 2.5

HFFP (Honeywell)t 12 250MHz 64 41.7 x 106 3.5
a66110/210 (array Microsystems) [33] 2 40MHz 64 13.1 X 106 6.6
PDSP16510 (Plessey Semicond.) [34] 1 40MHz 64 16.4 X 106 16.4
WFT circuit (DREO) 5 30MHz 60 111.1 x 10 2"2.2
* This is a floating point chip set. All the others are fixed point.
t This is a GaAs chip set (advance information 10/91). All the others are CMOS.

For comparing the proposed WFTA architecture to current FFT schemes, we

use four FFT chip sets that are commercially available'. It is assumed that the discrete

Fourier transformations are on complex data. Table 1 gives the number of circuits ini each

set, the clock rate, and the throughput rate in complex samples/s for a transformation

of length N. Also shown is a simple but intuitive "figure of merit" obtained by dividing

the throughput by the number of circuits. The higher the figure of merit is, the better.

Of the FFT circuits, the PDSP16510 by Plessey Semiconductors is the only one that has

a. figure of merit close to that of the WFT circuit. However, the PDSP16510 contains

at least twice as many gates as the WFT circuit, and costs about four times as much.

Compensating for silicon area and speed discrepancies wo.ld increase the figure of merit
of the WFT circuit to 75, i.e. at about four times the value of the top FFT device9.

7'['he gate count of the circuit therefore adds up to 47 000 + 8 000 = 55 000 gates.
'The FFT can also he computed on digital signal processors [35], but at slower speeds.
'To obtain the higher figure of merit, one could fit the 175000 gates required by the 60-point\ WFTA

oil two larger or higher-density circuits and raise their clock rate to 40MHz.
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On the other hand, the FFT devices offer more flexibility with regards to the number of

points of the transformation. The WFT circuit is limited to two transformation sizes: 20

and 60 points"° . This comparison illustrates well that the FFT and WFTA offer different

advantages and limitations, and are therefore suited to different applications.

This report is addressed to scientists who are studying the high-speed calculation

of the discrete Fourier transform, to engineers who design hardware for that computation,

i.e. VLSI circuits, and possibly to users of this hardware. No specific mathematical

background is required. The hardware descriptions are very detailed, mostly because the

only way to obtain accurate gate counts, and cost estimates, is by unfolding a complete

logic design. It is our hope that the logic cells presented here will be helpful in other

bit-serial circuits. S. Martineau did most of the cell design work. P. Lavoie proposed the

VLSI architecture and compared it to other schemes from speed and cost standpoints.

The report is organized as follows. In the next section, the discrete Fourier
transformation, Winograd's short length algorithms and the systolic architecture of \WVard.

\Ic('anny, and McWhirter are briefly reviewed. The routed architecture is introduced it

Section 3.0 using a 5-point transformation example. Then, in Section 4.0, the logic design

of a 20-point WFTA circuit based on the routed architecture is presented in detail. A
technique for laying out and interconnecting the adders is proposed. Multipliers with small

gate counts are introduced. The partitioning of a higher length 60-point algorithm in five

circints is explained. This partitioning follows a novel approach based on Winograd's

nesting method. Internal scaling of the data to prevent overflows is included in all the

celis. The section ends with a recapitulation of the various cells that are required and

their gate counts. In Section 5.0, computer simulations of the 20-point WFTA circuit. are

presented. The accuracy of the Fourier coefficients produced by the circuit is measured.

Practical considerations like the testability, clock speed and pin requirement are examined

in Section 6.0. Lastly, in Section 7.0, the routed architecture is compared to the systolic

architecture of Ward et al. and to a straightforward FFT design from a cost point of view.

'['he 20- and 60-point WFTA algorithms are derived in Appendix A. The twiddle factors

that inust be stored into the WFT circuit are listed in Appendix B. The logic symbols

appearing in the figures are described in Appendix C.

'in many high speed applications this is not much of an inconvenience since the number of points V
is fixed.
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2.0 WARD, McCANNY AND McWHIRTER'S SYSTOLIC
ARCHITECTURE

2.1 THE DISCRETE FOURIER TRANSFORMATION

The N-point discrete Fourier transform synthesis equation is

N-i

Ak= Za,,Wk, k=O,1,...,N-1, (1)

with
WV = e - j(2-/N) (2)

where {A 0 , A,,..., AN-I} denotes the discrete Fourier transform (DFT) of a sequence
of N evenly-spaced, possibly complex samples {ao, a,..., aN-1 . The operation of com-

p)ut.ilg the DFT of a sequence is called the discrete Fourier transformation. The original

sequence can be recovered from its DFT by the analysis equation

N-1

a, = Ak , n = O,1,...,N - 1 . (3)

This operation is called the inverse discrete Fourier transformation. It is very similar in

form to the discrete Fourier transformation.

The inverse discrete Fourier transformation can be implemented using a forward

l)FT device by reversing the order of the outputs I through N - 1 and dividing their

value by N. If N = qr and numbers are represented in q-ary digits, then the division by

N reduces to shifting the point r positions. When using an FFT, N is usually a power of

two, and inverse transforms are thus easily computed. Winograd algorithms for N = 2'

have been derived (361-[381, but they require more multiplications and additions than the

FFT for N > 32.

2.2 WINOGRAD'S SHORT LENGTH DISCRETE FOURIER TRANSFOR-
MATION ALGORITHMS

l':ach of the short length discrete Fourier transformation algorithms introduced by \Wiilo-

grad consists of a sequence of additions, followed by multiplications, and by more ad(Ii-
tions. Winograd has given algorithms for 2-, 3-, 4-, 5-, 7-, 8-, 9-, and 16-point DFTs. and

algorithms for other lengths can be found in [36]-[40].

For example, the 5-point algorithm producing the DFT {A 0 , A 1, A 2, A3,- A 4} of

all input sequence {ao, a,, a2, a3, a4} consists of the following operations:
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Additions:
s=a,1  + a 4  32 = al, -a 4  83 = a 3 + a 2  84 = a 3 - a 2

S5 = S 1 + S 3  S6 S1 - 83 S7 = S2 + S4  S8 = s 5 + ao

M1lt plications:

Mo= 18 MI = (cosu+cos2u S5i

M2 = o 2• S 6  m 3 = i(sin u + sin 2u) s 2  with

M4 = isin2u -S7 m 5 = i(sinu - sin2u) •S4

AIdditions:
S9 = mo m, SIO = S9 +m 2  Sl -- S9 - M 2  s 1 2 = m 3 -m 4

813 = fl14 + T, 5  914 = SlO + S12 S15 = SlO 812 S 1 6  S S 1 1 + S13

-' 17 11 -S I - 13

)u1/pat:

A0= Mo A 1 = s 1 4  A 2 = S 16  A3 =s 17  A, = s15

The algorithm contains 17 complex additions1' and 6 complex multiplications.

The fixed factor in each multiplication is either purely real or imaginary, never a complex

ilimnber. This is a property of Winograd's algorithms. Each complex multiplication can

therefore be computed using just two real multiplications instead of three or four.

2.3 WARD, McCANNY AND McWHIRTER'S SYSTOLIC ARCHITEC-

TURE

'li architecture presented here has been proposed by Ward, McCanny and

N'IcWhirter [27],[281. It has been chosen over other architectures [22],[29] because it is

complete, simple, and representative of the group. This architecture falls into the "'sys-

tolic" category, and hence it has several attractive properties [23],[24]. However it is rather

inefficient in its use of the silicon area, especially for large transform sizes. This draw-

back actually motivated us to develop a different, more compact architecture, which is

presented in the next section. Since the systolic architecture provides general insight into

th-2 implementation of Winograd's algorithms, and might be useful for some applications,

it is described first.

In the systolic architecture, the number of multipliers is kept small, whereas the

iiiiner of adders is allowed to grow proportionally to N2 . This allows computing the

''The term addations as used here refers to both the addition and the subtraction operations of the
Ilgorithm.



additions using four regular arrays of cells. For implementing an N-point transformation,

the -'systolic" arrays are programmed in such a way that some cells are active, i.e. compute

an addition, while others are simply used as delay units. The arrays compute far more

additions than required by Winograd's algorithms, and the resultant layouts are therefore

not as compact as they could be. On the other hand, since the layout regularity is very

high, both the design time and the risk of a design error are reduced. The clock rate of

the arrays is independent of their size, and very high computational speeds can be reached

even with very large arrays [24].

The architecture accepts and processes the N input samples in parallel, and is

called bit-serial because the samples enter and travel in the circuit in a serial fashion, i.e.

bit by bit. The data rate is inversely proportional to the number of bits per sample. High

processing rates are achieved by computing all the N Fourier coefficients in parallel. The

architecture requires 2N input and 2N output pins, for the complex data samples and

Fourier coefficients, respectively.

The architecture is best understood when an N-point transformation is written

ill the form:

A = Z(Xa x Yb). (4)

The input samples and DFT coefficients form the vectors a and A, respectively. X is an

.1! x N (row x column) matrix and Z is-an N x M matrix, where M denotes the number

of complex multiplications of the N-point transformation. The matrices X and Y contain

only +1, -l and 0 values. It is through the matrix-vector products that the additions

of Winograd's algorithm are carried out. The product Yb can be precalculated so as to

form a set of M twiddle factors 12 having either a purely real or imaginary value.

The 5-point transformation [2], for example, can be calculated using (4) where

1 1 1 1 1

0 1 1 1 1
0 1 -1 -1 1

0 1 0 0 -1

0 1 -1 1 -1

0 0 -1 1 0

"2 These twiddle factors play a role similar to the twiddle factors in the FFT, but they differ from the
latter in number and value.
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2

C o s U 
c o s 2 u

(ybU-C 2u
=Ycou 2 with u =,i(sin u + sin 2u)

i sin 2u

i(sin u - sin 2u)

and
1 0 0 0 0 0

1 1 1 1 -1 0
Z= 1 1 -1 0 1 1

1 1 -1 0 -1 -1
1 1 1 -1 1 0

The systolic architecture would yield an implementation with 2M = 12 multi-

pliers, and 4MN = 120 array cells, of which 84 would be performing additions. When

considering that Winograd's algorithm uses just 34 additions, the systolic architecture

appears inefficient. However, it is simple and very regular.

The number of gates in one array cell is now examined. Using the cell func-

tionality described in [27], a logic diagram, such as the one shown in Fig. 2, can be

designed. This particular design contains 84 gates if it were implemented using a popular

CMOS library [41] with flip-flops featuring clear and scan. Based on this design, the total

number G, of gates in the four systolic arrays is:

Ga = 336NM. (5)

The main drawback of this architecture is that the systolic arrays requires a
number of cells that is proportional to N2 . As a result, the architecture quickly becomes

prohibitively expensive as N increases.

3.0 A ROUTED ARCHITECTURE FOR THE WFTA

i this section, a cost-effective bit-serial architecture for the WFTA is presented. Even

thogh this architecture lacks some of the elegant properties of the systolic architec-

tures [24], it should yield circuits having smaller areas, and hence allow discrete Fourier

transformations of higher lengths.

In the proposed architecture, an N-point WFTA is mapped directly onto silicon,

with a. minimum of modifications. This follows the idea of MacLeod and Bragg [25]. The

9
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Fignre 2: Logic diagram of one systolic array cell. The logic symbols are described in
Appendix C.

resultant layout exhibits little regularity, as wires of various length connect the adders.

Because the architecture requires routing between the adders, we refer to it as the routed

architecture.

The adders can be organized in layers. The layers can then be stacked and

interconnected using a "channel routing" software. Assume that the Winograd nesting

method [2] is used for constructing an N-point algorithm from two smaller Ni-, and N2-

point algorithms. Let N = NIN 2 , and N1 and N 2 be relatively prime. The adders in the

N-point implementation are now examined. Let L1 and L 2 denote the number of layers

of adders, and A, and A2 denote the largest number of adders per layer, in the Nl-, and

V2-point implementations, respectively. Let M1 denotes the number of multiplications in

the .Vl-point implementation. The number of layers (L) and the largest number of adders

per layer (A) in the N-point implementation are given by:

L = Ll + L2 , (6)

A = max[N 2A,,MA 2] . (7)

The number of layers grows proportionally to log(N), whereas the number of

adders per layer grows proportionally to N. The total number of adders is therefore

proportional to N log(N). Note that this does not take into account the routing between

10



and through the layers, and the silicon area itself asymptotically grows at a higher rate13 .

Nevertheless, for the values of N considered here, the adders occupy more area than the

interconnections, and their number is relevant.

In the routed architecture, the adders are divided into four groups. Two groups

compute the real and imaginary additions before the multiplications; the two others corn-

plute the additions that follow the multiplications. Figure 3 shows a floorplan for the

Real part of Imaginary part of
input samples input samples

I/N ON

Real Imaginary
additions additions

Real multiplications Imaginary multiplications
with real or imaginary with real or imaginarytwiddle factors ) twiddle factors

S Real Imaginary

additions additions

Real part of Imaginary part of
DFT coefficients DFT coefficients

Figure 3: Floorplan of the routed architecture.

roited architecture, where the real parts of the input samples are processed on one side.

and the imaginary parts on the other. The two sides are identical, except in the multi-

pliers where some twiddle factors differ in sign. The computations of the two side can

ths be carried out using separate circuits, provided that approximately M/2 pilns are

":Tlhompson [42] has shown with an asymptotical analysis that the total area of any circuit computing

thw DFT in fixed time inust grow proportionally to N2 .
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available for data exchanges between the circuits and that the twiddle factors are pro-

grammable. In other words, two identical WFT circuits designed to compute DFTs of'

real-valued input sequences could therefore be connected together and compute DFTs

of complex-valued sequences. This advantageous partitioning could not be implemented

easily with the FFT.

In a bit-serial architecture, each addition can be implemented with a single cell

of" modest complexity. Each multiplication, on the other hand, requires a row of I,, cells,

where 1,,, denotes the number of bits in the multiplicand (the twiddle factor). Therefore,

for moderate transform sizes (N < 100), the multipliers generally occupy more silicon area
than the four groups of adders. For higher values of N, the routing between the layers

of adders occupies a higher percentage of the silicon area and may cause difficulties. It

should be pointed out that the systolic architectures would also become impractical at
lHIM, point.

The attainable throughput is equal to the clock rate divided by the number of

bits per sample (1,). In order to get a high clock rate (30MHz or higher), the "critical

pitli" of the circuit, i.e. the electrical path with the longest propagation delay, must be
minHimized. In the routed architecture, the critical path may either be in the adders or

in tle multipliers. Indeed, the wires between the layers of adders may be of significant

length and exhibit a large capacitance, having a significant effect on the circuit's speed.

'[le adders should therefore be pipelined so that the data transfers between the different

layers occur simultaneously. Inside each bit-serial multiplier, there is a carry chain where

pipelining should also be applied. Pipelining shortens the critical path, but increases the

latncy of the circuit.

Figure 4 shows a block diagram of the routed architecture for Winograd's 5-

point algorithm. Samples enter bit-serially at the top. They traverse the first two groups

of adders (left and right), are multiplied by the twiddle factors, and traverse two more

groups of adders. The bit-serial DFT coefficients then exit the circuit. Flip-flops have

beet inserted after every layer of adders, and at every three stages of multiplier cells, for

pipelining.

An important issue when implementing the discrete Fourier transformation is

the partitioning: can a computational load too large for a single device be distributed

ili loig several devices at a reasonable cost? A partitioning technique based on Winograd's

iI. l lg method is now proposed for the routed architecture.

Using Winograd's nesting method, an N = NIN 2-point algorithm can be con-

st' icted from two smaller N1-, and N2-point algorithms, conditional to N1 and N2 being

relatively prime. Let A, and A 2 denote the number of additions, and M1 and MV2 denote

12



Real part of Imaginary part of
input samples input samples

So a, a2  8 3  a4  a4. a3 a'2  a; a0

.... .. ..

AA

t 5 al 4i _5 Z ;4i a ) a
:3 :3 :3 :3 75 7 5 5

Ao At A2 A3  A4 A4 A3 A2 A, Ao

FHgiire 4: The routed architecture for Winograd's 5-point algorithm. In this particular
case, the leftmost and rightmost multipliers could be replaced by flip-1lolps.
since their twiddle factors are equal to one.
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the number of multiplications, in the Nj-, and N2-point algorithms, respectively. The

constructed N-point algorithm then contains:

M = MMV2 multiplications (8)

and

A = min[N2 Ai + M1 A 2, M2 A1 + NIA 2] additions. (9)

llv examining the nesting method [2], the structure of the N-point algorithm appears

its a. "core" of M, N2-point transformations "surrounded" by AIN 2 additions. The core

is likely to be the expensive part because it contains all the multiplications. A natural
way of partitioning it is between the N2-point transformations. Thus a circuit computing

one .V,2-point transform and all the A 1 N2 surrounding additions could compute V2 o'

the V Fourier coefficients. Placing M1 such circuits side by side would yield an N-point

tratisformation machine. The appeal of this approach is twofold. First, the number of

tiiiiltiphiers is minimal. Second, the circuits are identical14 . The disadvantages are that
the .,lV 2 surrounding additions are duplicated M, times (once per circuit). Section 1.3

gives an example of the partitioning technique for Ni = 3 and N2 = 20. The exampleh

shows that modifications can be applied to the architecture for reducing its cost.

4.0 LOGIC DESIGN OF A 20-POINT WINOGRAD FOURIER
TRANSFORMATION CIRCUIT

This section presents the design of a 20-point Winograd Fourier transformation circuit.

lie architecture chosen for implementing the circuit is the routed architecture present ed

i) Section 3.0. We focus our attention on the design at the logic level, and give schematic

(liagrams of the cells required for building the circuit. The design has been givel to a
iimmuacturer for fabrication. Samples shall be available by the first quarter of 1992.

The Winograd Fourier transformation circuit, or WFT circuit, is designed to

hit-serially accept and produce data in two's complement form. Surprisingly, bit-serial

arit hmetic components capable of accepting data in two's-complement notation are Iiar(

to ind in the literature. Moreover, the few that we found generally turned out to be

(expensive in the number of gates. Most of the basic cells presented in this sectioii are

therefore either of our own, or the result of several modifications and iterations of a

pk)lished design.

This section has six parts. First, the data format convention for conimunicat i1,

'This is assuming that the twiddle factors can be programmed to suit the N-point transformaion.
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with the WFT circ it is described. The cells required for the additions are presented.

Thenr the functionality required for a 60-point multi-circuit mode is included in the circuit.

h'le multipliers are described in great detail. Next the position of the binary point at the

output of tile circuit is examined. The different modes of the circuit are explained with

the associated control --ignals. Lastly, gate counts are given for all the cells and for the

comlt)Iete circuit.

4.1 DATA FORMAT

The data format has an impact on both the accuracy of the output and on tile cost of

the design. A fixed point format is cheaper to implement than a floating point. However.

if the adders and multipliers use fixed point arithmetic, then overflows might occur in

the circuit when the valid range determined by the number of bits l is exceeded. The

following four strategies can be used to deal with this problem:

I. 11(adroorn proviston" The niumber of bits l, is increased while keeping the saiiruplc

values constant, so only a fraction of the input range available is used.

2. Fixed scaling: The outputs of some adders and multipliers are scaled down. The

least significant bit (LSB) is dropped at given stages of the computations to increase

the dynamic rangp a%_ilable.

3l. .1 utomatic scaling: Scaling (town is automatically applied where necessary. Thus

overflows never occur. This is sometimes called "block floating point".

Floattng poidt: Each individual data element is represented in a floating point for-

niat.

The first strategy (headroom provision) is the simplest, but it slows the bit-

serial circuit down since l, is increased. The second strategy (fixed scaling) is easily

imirplemented and can reduce the probability of overflow. However, if the data is scaled

dohwn more than necessary. then precision will be lost at the output. Thus the second

-41llegV is best combined with the first strategy: adding headroom allows delaying the

scallimy to latter stages, where the LS|Is are non-significant anyways. The third st rategy

(alloioatic scaling) is intuitively appealing because just the miin rm1 amount of scaliil g

is applied. The last strategy (floating point) is the one that, provides the most inforni; io0n1

at le output. It is more expensive than the three others.

The WFT circuit uses fixed scaling, which is fairly simple to implement. The

block floating point and floating point strategies should be considered for future imple-

reir atio1s.
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Each complex sample has a real and an imaginary parts, whose values are rep-

resented in a fixed point, two's complement form. The 20 complex samples all enter the

WFT circuit synchronously, in parallel, with their real and imaginary parts on separate

inpit. pins. The number of input pins is therefore equal to 2N = 40. The least signif-

icant bits enter the circuit first, and the most significant bits last. Samples may be of

any length 1,, but must be separated by one bit, or more, of padding. The values of the

padding !)its are discarded by the circuit. Along with the inputs samples, a control signal

allel "'data valid it," (DVI) indicates whether the 2N accompanying data bits belong to

sainjples (DVI = 1) or are simply padding bits (DVI = 0).

The 20 complex Fourier coefficients exit the WFT circuit in parallel, on a second

set of 2N = 40 pins, after a certain delay due to the pipelining in the circuit. The output

fo,,iiat is similar to the input format, and a "data valid out" (DVO) signal generated by the

uirciit accompanies the Fourier coefficients. The Fourier coefficients are 1, bits long, with

, I i nary point whose position depends on the input samples, the twiddle factors, and the

ailit of "'scaling" that is being applied. They are separated by the same number of bits

f palding as the corresponding input samples. However, the values of the padding bits

,aY have changed and should be ignore.l. An "overflow" signal (OFO) is produced t'i the

clock cycle following the delivery of the most significant bits of the Fourier coefficients.

If this signal is high (OFO = 1), then an overflow has occurred somewhere in the circuit

and the corresponding set of Fourier coefficients is invalid. The WFT circuit pursues its

4Oiipitations regardless of overflows. An overflow in one transformation does 'lot affect

tIe following transformations.

4.2 CELLS FOR ADDITION OPERATIONS

[li 20-point WFm'Ai5 contains 108 complex (216 real) additions. These additions are

livided into two sets: the additions before the multipliers (124 real additions), and the

aidditions after the multipliers (92 real additions). Since the additions required for the real

aid imaginary data are the same, only one set of additions needs be considered. From

t!is point, only t it, additions on real data are examined. It should be kept in mind that

,11 ithe ciurits shiowni in this section are duplicated in the WFT circuit.

The adders required for the -'pre-niltipliers" additions can be distributed oil tiv(

la i,'. Figiin 5 shows the 20 input samples a0 . a, .... a1g, and the adders s1. s2. ... s6 ?.

,lga nijzed in five horizontal layers. The layers are numbered from one to five. fronm top

to It toi. The first laver contains the adders sl through s20 whose inputs are connected

'St e Appendix A for the 20-poi t WFTA.
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inputsamples ao . . a19

/40

first layer 31 ... S20

120168

second layer S21... 30 S47'... S5O .S 58

te is /6 /6

third layer S31-. 334 S39 - ~ 34 .1 S53  35.. 61

I s 6 /1 [
fourth layer •... 337 S43• • 845 S4 $62

/1 /3 /2 /1 /3 /

fifth layer 46
/3 ,/2 /3 /2

multipliers' inputs

Figure 5: Pre-multipliers additions in a 20-point WFTA.

17



only to the input samples. The second layer contains the adders whose inputs connect to

the first layer, the third layer contains adders whose inputs connect to the second layer,

and so on. Each line in Fig. 5 may represent more than one data connection.

Sometimes it is imperative to pass data across one or more layers. For instance,

on the second layer, two "through" wires allow the adders s54 and s62 on the fourth layer

to get some input from the first layer. The data on a through wire is always transferred

(town as adders on one layer take their input only from the precedent layers. Counting

the number of adders per layer, from top to bottom, yields 20, 18, 14, 8, and 2 adders,

respectively. The 24 outputs of the adders enter into the multipliers.

The "post-multipliers" additions can be distributed on four layers. Figure 6

shows the adders and their data dependencies. From top to bottom, the layers have 1-1,

multipliers' outputs MO • M23

sixth layer s63 Sso 6 1 SQ S104............................... 1 2/ 2/ 2Q /
seventh layer S94 St S1St4 SON S91S92

14 4 14............................... I/ 1/I/
F2 /2

eigth layer sGS... s71 S' . . .  se Sa... S S9 ... Soo...............................
A4 4 14

ninth layer SI oM . 103 s10 . .. sloe............................... ,
DFT coeffiaents

Figure 6: Post-multipliers additions in a 20-point WFTA.

8, 16. and 8 adders, respectively. The 20 outputs of the post-multipliers are the real parts

of tle Fourier coefficients A0 , A1, ... , A19.

As discussed in Section 3.0, pipelining the output of the adders is recommended

for maintaining a high clock rate. Then the through wires must also be pipelined to ensure

that the partial sums are synchronized.

In order to reduce the risk of overflow, programmable scalers are used for trun-

,atinlg the partial sums. If the scalers on a layer are "enabled", then the least significant
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bit, ofevery sum produced by that layer is discarded, making room for the most significant

bit, and shifting the binary point by one position. Enabling or disabling the scalers thus

allows tailoring the precision and dynamic range of the WFT circuit to the statistics of

the input samples. Scalers must also be inserted along through wires.

Now that the global organization of the additions has been examined, the logic

diagrams of the five associated cells are presented. There is a padding cell, an adder,

an overflow detection cell, a subtracter, and a hold-up cell. Since the designs are mostly

self-explanatory, the explanations are brief.

4.2.1 Padding Cell

The multipliers, in order to work properly, require that the most significant bit of the

multiplicand be followed by at least one padding bit having the same value. This con-

straint can be met by making the samples go through padding cells upon their entry into

the circuit. A padding cell is shown in Fig. 7. A sample enters the cell by the input X

" -- -- .'...

.... .. . ........ ....... .. .. . ... . .. .. ..... .. .. .. . ..
Shared

DVI R

Figure 7: Logic diagram of a padding cell.

and exits by the output X'.

In the WFT circuit, the external DVI signal is delayed by one clock cycle with

respect to the data and becomes a "reset" signal (R) that is used directly by the arithlletic

cells. Before exiting the circuit, the data is delayed by one clock cycle with respect to the

signal R, and the latter is output as DVO. The circuit shown under the padding cell in

ig. 7 transforms DVI into R. It is shared by all the padding cells of the circuit.

4.2.2 Adder

\ ,it-serial adder suitable for the WFT circuit is shown in Fig. S. The two terms entering

oii X and Y are added together. The resultant sum exits on S. Scaling is implemented

through a single multiplexer. This multiplexer is controlled by a circuit shared by all the

adders on a same layer. The shared circuit also resets the carry between the additions.
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..Oo°.. .°.... .. o

Y = S = X+Y

Shared

- SC

A 0

Figure 8: Logic diagram of a two's complement adder with scaling.

Setting the signal SC high (SC = 1) scales down all the outputs of the layer. A "partial

overflow" signal (POV) is produced at every clock cycle by each adder.

4.2.3 Overflow Detection Cell

'[le signals POV produced by the adders of a layer are combined together in an ovti roll?

detection cell, as shown in Fig. 9. This cell declares whether an overflow has occurred

(OVF = 1), or not (OVF = 0), in the layer.

P O V 
O V F

Shared SC

R A°°'° ... 0

1o ~..................°

Figure 9: Logic diagram of an overflow detection cell.
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Overflows may occur in several layers of the WFT circuit. The overflow signal

of each layer must therefore be combined with the overflow signals of the other layers to

Yield the overall OFO signal. This is done using the scan circuitry shown in Fig. 10. The

OFI 0 2 0 0 " . .......

"- .......... '

0: DFT made
1: PAUL mode

15 delays (multipliers)

0a A -.0  0 0 OFO

0. ADD mode
1t DFTfmode
2 PAL noe

Figure 10: Logic diagram of the overall overflow circuitry.

OFO signal is output one clock cycle after the MSB of the Fourier coefficients. In a large

system, the WFT circuit may be preceeded by other devices that may also overflow. An

inpit to the overflow scan (OFI) has therefore be included in the design. Whenever a set

of samples marked with an overflow enters the WFT circuit, the corresponding Fourier

coefficients are thus automatically declared invalid.

4.2.4 Subtracter

A siibtraction can be implemented either by fitting an adder with a sign inverter costing

[S gates, or by using a true subtracter. The second approach requires more design work.

btt yields a cell that has fewer gates. A subtracter cell is shown in Fig. 11. Remarkably.

it has exactly the same number of gates as the adder of Fig. 8.

4.2.5 Hold-up cell

IPiplining must be applied evenly on all the width of a layer; otherwise the partial sums

mAv loose their synchronism. This is also true of scaling; otherwise the position of the

binarv point may vary among the Fourier coefficients. Pipelining and scaling must there-

fore be applied to the data crossing a layer, or more, on through wires. A hold-ip cell,

such as the one shown in Fig. 12. serves that purpose.
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Figure 12: Logic diagram of a hold-tip cell with scaling.
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4.3 CELLS FOR A 60-POINT NESTED TRANSFORMATION

In Appendix A, a 60-point algorithm is derived from a 3-point algorithm and a 20-point
algorithm. The resultant algorithm consists of a set of additions, three 20-point trans-

formations, and another set of additions. The 20-point transformations are very similar

to discrete Fourier transformations, at the exception of the twiddle factors that have dif-
feret values. Assuming that the twiddle factors in the 20-point WFT circuit call be

programmed to the required values, three circuits could therefore compute the "core" of
the 60-point algorithm. Pursuing this idea, the extra adders required by the 60-point

algorithm could be included in the WFT circuit. This would slightly increase the cost of
the design, but greatly improve its versatility and usefulness.

There are many ways of dividing the computational load of the 60-point trans-
fordmation among a set of identical devices. A three circuit configuration is probably the
l1iost efficient in terms of silicon area. However, the data flow between the circuits would
re(piiire 210 data pins per circuit, and yield very high packaging costs. For many applica-
tiows, the configuration shown in Fig. 13 with five circuits instead of three may provide a
more balanced solution. This configuration requires only 160 data pins per circuit. Three
of' the circuits are used for additions and 20-point transforms: they accept the 60 complex
samiples arranged in three vectors a0 , al, and a2 , and produce three intermediate vectors
of results M0, M1 , and M2 . The 20-point transformations are denoted by W0 , W1 , and
W2 . Two circuits compute additions only: they accept M0 , M1 , and M2 and produce
tie Fourier coefficients in vectors A1 , and A2 . One "FIFO" circuit simply delays M0 to

ro(IImce A0 . It is not rigorously required, but has been included for convenience.
The Winograd nesting scheme, which has been used for building the 60-point

W\I"'A. gets its indexing from the "Chinese Remainder Theorem." The order in which
lie input samples must be presented to the five circuits is therefore rather peculiar. The

reader is referred to Appendix A for explanations on how the following vectors a0 , a,, a2 .
A0. A1, and A2 are obtained:

a0  = (ao, a2 1 , a4 2 , a3 , a2 4 , a4 5 , a6 , a2 7 , a4 8 , ag, a3 0 , a5l, a12 , a3 3 , a5 4 , a15 , a3 6 , a 5 7 , a 18 , a3 9 )

a1  = (a 4 0 ,a l ,a 2 2 , a4 3 ,a 4 ,a 2 5 ,a 4 6 ,a7 ,a 2 8 ,a4 9 ,alo, a3 1 ,a 5 2 , a1 3 ,a 34 , a5 5 , a1 6 , a7 ,a 5 8 ,a1 9 )

a2  = (a2 0 . a4 1 , a2 , a2 3 , a4 4 , a5 , a2 6 ,a4 7 , a8 , a2 9 , a5 0 , a11 , a3 2 , a5 3 , a14 ,a 3 5 , a5 6 , a17 , a3 8 , a5 9 )

A0 = (A0 , A2 1 ,A 42,A 3 ,A24, A45 ,A6 ,A27 ,A48 , A9,A 30 , A51,A1 2 , A33,A 54,A1 5 ,A36 , A57 ,A1 8 ,A 3 9'

A1 = (A40,AA22,A43, A4, A25,A46, ATA28, A49, A10, A31,A52, A13, A34, A55,A16, ATA58,A19)

A2 = (A20, A41,A2,A23,A44,A5,A26, A47, A8,A29, A50, AllA32, A53,A14, A35, A56,A17.A38, A59)
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lFigure 13: Block diagram of a 60-point DFT using five circuits. Note that the Fourier
coefficients produced by the bottom left circuit run through a FIFO circuit
just for synchronization with the other coefficients.
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An economical way of implementing the extra additions that are required by

the N-point WFTA consists of using programmable cells capable of either adding or

subtracting. These cells can then be configured in agreement with the role of the circuit

they belong to.

iFigure 14: Logic diagram of a programmable cell capable of either adding or subtracting.

A cell that can be programmed for either adding or subtracting is shown iin
Fig. 14. If the control signal PR is set high (PR = 1), then the cell acts as a subtracter

and produces X -¥Y; otherwise it produces X + ¥. The usual timing and scaling control

(irculit is shown under the cell.

4.4 CELLS FOR MULTIPLICATION OPERATIONS

The representation of numbers in two's complement form, as is convenient for addition and

subtraction, complicates the multiplication. Fortunately, the problem of implementing

a bit-serial multiplier accepting two's complement data has been addressed by several

authors. One solution consists of changing the numbers to a sign and magnitude notation,

multiplying their magnitudes with a standard bit-serial multiplier, and transforming the

result back into a correct two's complement number. The numbers can also be recoded

with ternary digits to suit Booth's algorithm. However, a more elegant approach has been

proIposedI by Lyon [4:3]. who has succeeded in modifying the original pipeline multiplier
(leveloped by Jackson, K~aiser, and McDonald 1441, which accepts positive data words on ly.

allowing it to do correct two's complement multiplication. This last scheme is attractive

for a number of reasons: it is modular. i.e. for a /,mbit twiddle factor the multiplier

consists of tm identical cells: it rounds the products to the same length as the input (lata:
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it computes the product at the same rate as the data is entered; and, lastly, it doesn't

require data converters.

Lyon's fully two's complement multiplier can be modified to better suit the WFT

circuit. First, it can be "re-timed" to reduce the amount of pipelining and the number of

gates. Re-timing is a technique for shortening or lengthening the critical path, and thus

the clock cycle duration, of VLSI circuits [45]. Then, the last two stages of the multiplier

can be simplified.

The two cells of the modified multiplier are shown in Fig. 15. In order to get a

nitiltiplier of length in, the first cell must be replicated l, - 1 times, and this row must
be terminated by the second cell. The ,l-bit data X travels through the lm stages of the

multiplier from left to right, one cell per clock cycle. The m-bit twiddle factor Y enters

the multiplier simultaneously with the data, and each of its bits propagates to all the cells

at once. The output Z of the last stage delivers the result, i.e. the 1, most significant bits

of the product of X and Y. The data can be either shorter, equal in length, or longer than

the twiddle factors. If it is shorter, then the twiddle factors must be stored before the

inultiplications and not changed.

The "partial product sum" input (PPS) of the first stage allows using an initial

off'set for rounding [43]. This "initial offset" (10) is generated by the circuit that is shown

in Fig. 16. Note that all the multipliers of the WFT circuit can share a single offset

generation circuit.

Each multiplier cell has two multiplexers for selecting one twiddle factor from

a group of five possibilities. The multiplexers are controlled by the signals CO, C1, C2,

anl R. If CO = 0, C1 = 0, and C2 = 0, then the multiplier reads its twiddle factor from Y.

The four other possibilities (TFO, TF1, TF2, and TF3) correspond to the fixed values that

are necessary for computing 20- and 60-point DFTs. Table 2 gives more detail on the

iiiltiplexers' control.

Appendix B provides all the twiddle factors that are required by the WFT circuit.

Note that the multiplier shown in Fig. 15 inverts the bits of the twiddle factors TFl, TF2,
and TF3. Hence the values given in appendix must be inverted before being stored in the

iimltiplier. The bits of TFO are not inverted and can be stored directly. The least significant
bit must be stored into the first multiplier stage, where the multiplicands enter and the

most significant bit into the last stage, where the product exits.

The four flip-flops marked "optional delays" in Fig. 15 allow pipelining the mtil-

t ipher to shorten the electrical path that otherwise runs from the PPS input of stage one

to the Z output of stage 1,. Putting the flip-flops at every stage may be unnecessary.

siwe the circuit's critical path would then surely move somewhere else, possibly in the
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Figuire 15: Logic diagram of a bit-serij multiplier cell. A master multiplier for 'M7 -bit

twiddle factors can be built by juxtaposing 1, - I cells of type (a) with one
cell of type (b).
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I---~~- 1,4 stages ""

10

Figure 16: Logic diagram of an initial offset generation circuit for the bit-serial multiplier
of Fig. 15. The signal 10 is fed into the input PPS of the first multiplier's cell.
The same circuit can be shared by all the multipliers.

Table 2: Control of the multipliers' multiplexers..

CO CI C2 R Output Note
0 0 0 0 Y external twiddle factor
0 0 0 1 Q stored twiddle factor
1 0 0 x TFO fixed value for 20 point DFT
x 0 1 x TF1 fixed value for 60 point DFT (W0 )
x L 0 x TF2 fixed value for 60 point DFT (Wl)
x I 1 x TF3 fixed value for 60 point DFT (W 2 )

routing between the adders, or in the output driving circuits. At first glance, inserting

the [lip-flops at every three stages should provide sufficient speed, and keep the cost of

th multiplers low.

The 20-point WFT circuit contains 48 multipliers that are evenly divided into

Iwo groups. One group is fed with the real parts, and the other with the imaginary parts,

of 24 complex intermediate results. The fixed twiddle factors are now examined further

ill detail, in an attempt to reduce the gate count of the multipliers. The values of the

twiddle factors in the 24 multipliers that are fed with real numbers can be calculated

using the equations:

v = -pi/2

u = -8*pi/5

multiplier 0 : 1
multiplier 1 : ((cos(u)+cos(2*u))/2-1)

multiplier 2 : ((cos(u)-cos(2*u))/2)
multiplier 3 : (sin(u)+sin(2*u))
multiplier 4 : sin(2*u)
multiplier 5 : (sin(u)-sin(2*u))
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multiplier 6 1
multiplier 7 ((cos(u)+cos(2*u))/2-1)

multiplier 8 ((cos(u)-cos(2*u))/2)
multiplier 9 (sin(u)+sin(2*u))
multiplier 10 sin(2*u)
multiplier 11 (sin(u)-sin(2*u))
multiplier 12 1
multiplier 13 ((cos(u)+cos(2*u))/2-1)
multiplier 14 ((cos(u)-cos(2*u))/2)
multiplier 15 (sin(u)+sin(2*u))
multiplier 16 sin(2*u)
multiplier 17 (sin(u)-sin(2*u))
multiplier 18 sin(v)
multiplier 19 sin(v)*((cos(u)+cos(2*u))/2-1)
multiplier 20 sin(v)*((cos(u)-cos(2*u))/2)
multiplier 21 sin(v)*(sin(u)+sin(2*u))
multiplier 22 sin(v)*sin(2*u)
multiplier 23 sin(v)*(sin(u)-sin(2*u))

It is readily apparent that the twiddle factors of multipliers 0 through 5 are

i(eltical to those of multipliers 6 through 11 and 12 through 17. Since six of the 24 values

appear three times each, thesc six values need only be stored once. On_ can therefore

use, lust 12 multipliers with twiddle factor storage (master multipliers), and complte this

set with 12 slave multipliers borrowing the twiddle factors of the first 12. The design of

a slave multiplier is straightforward. and the cells obtained are shown in Fig. 17. Now

(o1,si(lering the 24 multipliers fed with imaginary numbers, the situation is the same. the

only difference being a sign inversion in the twiddle factors of multipliers 3, 4, 5. 9. 10.

i1. 15, 16, 17, 18, 19, and 2016.

In order to minimize the wiring length between the multipliers, every slave nul-

ti)lier should be placed close to its master multiplier. The order 0, 6, 12, 18, 1, 7, 1:3. 19,

2. ,,. , 20, 3. 9. 15, 21, 4. 10. 16. 22. 5, 11, 17, and 23, where the master multipliers are

,lulici-ed. neets this constraint, and effectively places every master multiplier between Its
I wo slaves.

"'This is correct for a 20-point transformation (TFO). For a 60-point transformation, this is also true
for lie sets TF1 and TF2; however, in TF3, it is the signs of multipliers 0, 1, 2, 6, 7. 8, 12, 1., 141, 21. 22.
Aid 23 that are inverted.
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Figurte 17: Logic diagram of -t bit-serial multiplier cell without twiddle factor control. A
slaf'e multiplier 1,-bit long is built by juxtaposing 1m - I cells of type (a) with
one cell of type (b).
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4.5 POSITION OF THE BINARY POINT

1'' position Po of the binary point in the Fourier coefficients output by the WFT circuit

is a function of its position in the input samples (pi) and in the twiddle factors (p,), and

of the number of layers L, whose scalers are active. Define the position of the binary

point as the number of binary places between the point and the least significant bit. For

example, the position of the binary point in "101.01" would be 2, whereas its position

in "llu." would be -1. The position po of the binary point in the Fourier coefficients

produced by the WFT circuit is given by:

po= pi - Ls - ( - pm - l). (10)

4.6 OPERATING MODES AND CONTROL

In this section, the WFT circuit is examined globally. Its four operating modes, which

ar Mutually exclusive, are described.

The first mode is a "discrete Fourier transformation" mode (OFT). This mode

allows computing 20-point DFTs using a single circuit, as depicted in Fig. 18. The real

a 0 0 0 0 a'i i t i I
DFT A B C C, B" A'

AA
TFO + +

W W,

A A'

Figure 18: Block diagram of a WFT circuit computing 20-point transforms in its DFT
mode

and imaginary parts of the samples, which are respectively denoted by a and a'. enter

the circuit at the top of the diagram and first traverse a tree of adders normally used

iii 60-point transformations. Since zeros are applied to the other inputs of the treei , the

(exiting samples are unchanged. The samples then enter into the transformation modules
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denoted by W and W'. The real and imaginary parts of the Fourier coefficients, which

are denoted by A and A', exit at the bottom of the circuit.

The mode DFT is also used for computing the intermediate results M 0 , M 1 , and

M 2 , in 60-point transformations. A five-cicuit configuration is shown in Fig. 19. In the 5-

210 a6 a, a, a2 a

OFA A C C AN OFT A a C ' . A' OFT A S C C. A'
AA AA SA
TF1 *TF2 *. *TF3 +~~

ADD A C C B AW AD A a C C A'
AA AS

FIFO

A0  A0 A1 A A2  A

Fig,,re 19: Block diagram of a 5-circuit array computing 60-point DFTs. The top three
circuits are in the mode DFT. The bottom two are in the mode ADD. A sixth,
circuit (FIFO) simply delays 20 Fourier coefficients by two clock cycles.

circinit configuration, the intermediate sets of results M 0 , M 1 , and M 2, enter two circuits

Ihat are in an -addition" mode (ADD), yielding 40 of the 60 Fourier coefficients. Tl

remaining 20 Fourier coefficients are obtained by delaying the 20 intermediate results in

the set M 0 by two clock cycles.

The third mode of operation is a straightforward "multiplier" mode (MUL). A
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circuit in this mode provides direct input and output to 24 of its multipliers. Figure 20

shows the corresponding internal data path. On one side of the circuit, the 12 inputs x

x y 0 0 y ' x '

MUL A a C C B' A'

AA

y' Mulipliers

Figure 20: Block diagram of a WFT circuit in the mode MUL.

are multiplied by the 12 inputs y to yield the 12 products z. The same computations take

place on the other side.

The last mode is a "test" mode (TST) for validation of the WFT circuit after
fabrication. This mode is not a normal mode of operation. In this mode, all the flip-flops

in the circuit become connected through a scan chain. Their values can be shifted out of

the circuit and replaced by new values.

The programmable adders/subtracters required for 60-point transformations are

distributed on two layers and controlled by a pair signals specifying whether they must
add and add" (AA), "add and subtract" (AS), "subtract and add" (SA), or "subtract and

subtract" (55). Figure 19 shows the mode of each circuit (DFT or ADD), the signals con-

trolling the programmable adders/subtracters (AA, AS, or SA), and which twiddle factors

are being used.

The scalers in the two layers of programmable adders/subtracters and in the

nine11 layers of the 20-point transformation are controlled by a 3-bit signal that provides

,iglit different settings. Table 3 shows the layers which are scaled down and which are

iiot for each of the settings. A '1" in the table indicates that scaling is enabled. a "'0"

thai it is disabled.

The internal data path of the WFT circuit is shown in Fig. 21. The picture.

which provides wire counts, may appear complicated at first. However, the routing is

straightforward and practical fur current design tools and fabrication technology.
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Table 3: Scaling control..

Layer Setting
0 1 2 3 4 5 6 7

Adders/subtracters, layer 1 0 0 0 0 0 0 0 1
Adders/subtracters, layer 2 0 0 0 0 0 0 1 1
20-point, pre-multipliers, layer 1 0 0 0 0 0 1 1 1
20-point, pre-multipliers, layer 2 0 0 0 0 1 1 1 1
20-point, pre-multipliers, layer 3 0 0 0 1 1 1 1 1
20-point, pre-multipliers, layer 4 0 0 1 1 1 1 1 1
20-point, pre-multipliers, layer 5 0 1 1 1 1 1 1 1
20-point, post-multipliers, layer 6 0 0 0 0 0 0 0 1
20-point, post-multipliers, layer 7 0 0 0 0 0 0 1 1
20-point, post-multipliers, layer 8 0 0 0 0 0 1 1 1
20-point, post-multipliers, layer 9 0 0 0 0 1 1 1 1

4.7 GATE COUNT

Using the logic diagrams of all the cells presented in this section, a gate count for the

entire WFT circuit is now computed. The number of cells of each type is shown in Table 4.

By following the data progression in the circuit, one finds that there are 120

padding cells, one for each data input, and each cell has 13 gates. The data then tra-

verses 80 adders/subtracters containing 44 gates each, and enter into the 20-point trans-

formation. 120 adders and 96 subtracters, containing 36 gates each, are required for that

transformation. Maintaining the synchronicity of the data path involves 204 hold-up cells

with scaling: 40 are in the two layers of programmable adders/subtracters, and 164 are

iII tHie 20-point transformation modules. These cells are inexpensive at 13 gates each. A

55-gate overflow detection cell is required for each of the 11 layers of adders and sub-

tracters. The master and slave multipliers require 576 multiplier cells having complexities

ranging from 43 to 65 gates. They also require 360 hold-up cells containing 10 gates each.

Thet, 40 hold-up cells delay the output of the data with respect to the DVO and OFO

signals. For reconfiguring the data path to suit the various circuit modes, 40 2-to-i and

24 3-to-1 multiplexers are required. After adding everything together, the WFT circuit

enids ,ip containing approximately 55000 gates, and can therefore be implemented in a

mnode ately large gate array.
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Table 4: Cell and gate counts for the WFT circuit..

Cell Name Count Gates/Cell Total Gates
padding cell 120 13 1 560
adder/subtracter 80 44 3 520
adder (with scaling) 120 36 4320
subtracter (with scaling) 96 36 3456
hold-up cell (with scaling) 204 13 2652
overflow detection cell 11 ;55 605
offset generation 2 93 186
master mult. (stages 1-11) 264 65 17160
master mult. (stage 12) 24 63 1 512
slave mult. (stages 1-11) 264 45 11 880
slave mut. (stage 12) 24 43 1 032
hold-up cell (without scaling) 400 10 4000
multiplexers 2:1 (data path) 40 4 160
multiplexers 3:1 (data path) 24 5 120
Gates in circuit 52/,163

5.0 LOGIC SIMULATION

The WFT circuit has been simulated at the logic level for verifying the correctness and

completeness of the design presented in Section 4.0 and measuring the effect of the trun-

cation errors. The simulations have been carried out on small computers" using software
written in the MATLAB programming language [46]. The circuit has been modeled at

the gate level. Logic state transitions are synchronous, implying that propagation delays

are not taken into account. The size of the source code is about 65 Kbytes. Simulation of

the DFT mode takes about ten seconds per clock cycle. Computing the DFT of 20 15-bit

complex samples takes 45 clock cycles from the time the circuit is reset until the most

significant bit of the Fourier coefficients exits, and hence lasts for seven minutes and a

lIalf.

An example of simulation is now presented. The simulator is fed with 20 complex

samples having real and imaginary 15-bit values picked up at random from the discrete

interval [-2048,20471 with all values being equiprobable. As explained in Section 4.5,

lie binary point in the Fourier coefficients output by the circuit is shifted with respect to

its position at the input. According to Equation (10), with pi = 0, L, = 0 (no scaling),

"'wo workstations, a SUN SPARCStation I and a SUN IPC, have been used.
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1m = 12 and pm = 9, the point is at position po = -2 of the output. The output of the

WET circuit must therefore by multiplied by four to yield the Fourier coefficients.

X1O4
2

1.5

-1

0.5 °

0 2 4 0 12 1 6 1 0

astoinuampe chse atrno nteitrvl[24,07.Bt

-0.5 0

-1

-I.5

02 2 1'0 12 14 16 Is 20

Fourier coefficient

F~igure 22: Plot of the Fourier coefficients computed by simulation of the WFT circuit for
a set of input samples chosen at random in the interval [-2 048, 2047]. B~oth

the real ("o") and the imaginary ("+") parts of the coefficients are shown.

The Fourier coefficients obtained by simulation are shown in Fig. 22. Comparing

the values obtained by simulation with the theoretical values yields the errors shown in

Fig. 2:3. These errors result from the truncation errors of the twiddle factors stored in

the multipliers. These initial truncation errors grow as they combine themselves in the

adders and subtracters that follow. The Fourier coefficients of our example end up having

only ten significant bits, whereas the input samples and the twiddle factors had twelve

significant bits. The reader is referred to the literature for more detailed error analysis of

Winograd's algorithms [47]-[52].

In the previous example, the input samples were assumed to be error-free, i.e.

perfectly accurate. In practice, the input values themselves may be inaccurate, as a result

of (Iiiantization, for example. This may further reduce the number of significant bits in

the lFourier coefficients. Because the errors in the input samples combine themselves in

the [)re-multipliers additions, it would thus be a good idea to use more significant hits in

the samples than in the twiddle factors, i.e. to set 1, > li.
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Figure 23: Plot of the differences, or errors, between the Fourier coefficients computed
by simulation of the WFT circuit and their theoretical values (real "o" and
imaginary "+" errors).

6.0 PRACTICAL CONSIDERATIONS

The testability, speed, and number of pins of the WFT circuit are examined in this section.
These three issues are important in practice.

6.1 TESTABILITY

To verify if a circuit operates according to its specification, a comprehensive set of circuit

stimuli with the expected outputs must be prepared. These are called test vectors. Test
vectors can be categorized in two kinds.

The first kind of test vectors is intented to guaranty that a device under test has
no fabrication defects, i.e. no faults, and operates as predicted from its fabrication masks".

The fault coverage is generally measured by using a single "stuck at" fault model [53]. A
score of 95% with this model is usually considered sufficient for prototyping. A 95% fault
coverage means that one out of twenty defective devices having a single fault can pass the

test, and end up in the customer's hands.

The generation and validation of the first kind of test vectors for the WFT circuit

"i1n practice, the generation and validation of test patterns is so difficult and costly that manufacturers
often accept the risks of shipping insufficiently tested devices that may be defective.
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has been assigned to the circuit manufacturer' which uses a generic testing approach

applicable to any design. This structured approach requires special circuitry and increases

the number of gates on the circuit by about 10 percent. The additional gates have been

included in the gate counts of Section 4.7.

The second kind of test vectors are aimed at verifying that the manufactured

devices, and the manufacturer's circuit model, does what the designer expects. These

ftunctional test vectors are meant to ensure that the circuit has no design flaws. They

can be used in gate-level circuit simulations, i.e. where propagation delays are taken

into account, and during fabrication, normally as a complement to the first kind of test
pl~a terns.

Functional test vectors cannot be exhaustive because with modern circuit densi-

ties the number of possible input combinations is too large. Therefore, the circuit designer

innst prepare ad hoc functional test vectors aimed at detecting common design flaws.

It would be tedious to describe all the functional test vectors that have been

prepared for the WFT circuit. A quick overview of the various categories of test vectors

should be sufficient to illustrate the concept of functional testability. The eight categories

of test vectors are listed below, along with short descriptions:

1. Test adder: Compute maximum positive value plus zero, one, and minus one. Com-

pute minimum negative value plus zero, one, and minus one. Compute maximum
value plus minimum value.

2. Test subtracter: Same test as for the adder.

3. Test programmable adder/subtracter: Try the control signals (AA, AS, SA, and 55)

while in the mode ADD.

4. Test overflow: In the mode OFT, with scaling enabled and disabled, trigger overflows

in an adder using two positive and two negative numbers, and do the samie in

a subtracter with two numbers with different signs. Repeat for pre-, and post-

multipliers layers as well as for real and imaginary sides of circuit. Try to overflow

several adders per layer, and several layers at once.

5. Test twiddle factors: In the mode OFT, apply input vectors to circuit such that

every bit of every twiddle factor can be observed at the output. Repeat for the four

different settings: TFO, TF1, TF2, and TF3.

"The manufacturer is LSI Logic Co. of Canada.
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6. Test multiplier: For 15-bit long data, separated by 1- and 10-bit long padding, mul-

tiply very small and very large values, testing all the four possible sign combinations.

Make sure that at least one observable result would be different if the initial offset

circuitry didn't work.

7. Test 20-point DFT: Input random complex data with mixed signs and verify Fourier

coefficients produced by circuit. Try a sinewave that produces an overflow and one

that does not. Repeat with scaling.

S. Test 60-point DFT: Apply to the circuit the inputs it would get if it were used five

times in succession to compute 60-point discrete Fourier transforms.

Generating the functional test vectors using the logic simulator took several

weeks of CPU time on our computers. The functional test is by no means exhaustive,

but, it should provide enough evidence for judging whether the circuits produced by the

San ufacturer are functional or not.

6.2 SPEED

The speed of a WFT circuit manufactured in a 0.7m CMOS gate array technology is

now discussed. Preliminary investigation of the circuit has indicated that its clock rate

will be limited by a signal path in the multipliers. Assuming that pipelining flip-flops are

inserted at every three stages of multiplier cells2", the critical path would run through

three full adders and three multiplexers. Electrical simulations indicate a maximum clock

rate of 30 MHz. This is an approximation, since statistical estimates of layout-dependent

parameters were used.

Assuming that the samples are 1, = 15 bits long, with one bit of padding be-

tween the samples of two successive transforms, a 30 MHz WFT circuit could compute a

transform in 16 x 0.033ns = 0.53pis, i.e. compute over 1.8 million transforms per second.

This corresponds to throughputs of 37 million and 111 million samples per second for

20-1 oint and 60-point transformations. respectively.

6.3 PIN COUNT

The pin requirement of the WFT circuit is given in Table 5. It turns out that 196 pins

are necessary, of which 164 are used for transferring data and indicating overflows. 10 for

control, 2 for testability, 1 for the external clock and 19 for power. No tri-state pads are

2 0 See Section 4.1 for an explanation of these flip-flops.
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Table 5: Input/output requirement of the WFT circuit..

Name Description Pins in/out
Data in six groups of 20 120 in
Data out two groups of 20 40 out
Mode mode: DFT, ADD, MUL, or TST 2 in
Adder/Subtr. control AA, AS, SA, or 55 2 in
Twiddle Factors control TFO, TF1, TF2, or TF3 2 in
Scaling control eight different settings 3 in
Circuit reset RST 1 in
Data Valid In DVI 1 in
Data Valid Out DVO 1 out
Overflow In OFI 1 in
Overflow Out OFO 1 out
Scan In for testability I in
Scan Out for testability 1 out
Clock CLK 1 in
Power VDD, GND 19 n.a.
Total 196

beiiig used: all pins are either for input (134), output (43) or power (19). Packages with

196 pins are currently available.

7.0 COST COMPARISON

hi this section, the routed architecture is compared to the systolic architecture of \'Vard

et Wil [27] and to a parallel FFT architecture from a cost standpoint. The unit measure

of cost is the logic gate, for lack of a better unit that would take into consideration tie

routing areas. The routed WFTA and the parallel FFT architectures require routing.

wvhereas the systolic architecture does not.

The number of additions and multiplications in the WFTA can be derived from

Eqinations (8) and (9). The additions and multiplications in the FFT can be calculated

AFFT= (N/2)(-10 + 71og 2 N)+S. (1)

all(]

MFFT = (N/2)(-10 + 3log2 N) + 8. (12)

'hI-' number of arithmetic operations being known, the gate count of each architecture
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can be computed. Assume that each multiplier has 12 stages, and that each stage consists

of one multiplier cell containing 72 gates. Adders and subtracters cost 36 gates each. The

arrays in the systolic architecture contain 336NMw gates21. Denote by GFFT, Grouted, and

.,o the numbers of gates in the FFT, routed, and systolic architectures, respectively.

Tlwse gate counts can be calculated by the equations:

GFFT = (1 2 . 7 2 . MFFT) + ( 3 6 . AFFT), (13)

Grouted = (12.72 Mw) + (36. Aw) , (14)

Gsto, (12-72. Mw) + (336. N Mw). (15)

The costs of the three architectures are shown in Fig. 24 as a function of the number

of points N. Of the three, the routed architecture appears to be the least expei.sive.
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Il 'ire 24: Plot of the the number of gates in the FFT, routed, and systolic architectures.
as a function of the number of points N.

li- IVFT architecture contains two to three times more gates than the routed \WFT:A for

coni)arable transform sizes. The systolic architecture is much more expensive thaii the

two others.

2 1,e Section 2.0 for an analysis of the systolic architecture cost.
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8.0 CONCLUSION

In this report, a routed architecture for the Winograd Fourier transform algorithms

(WFTA) has been presented. This bit-serial architecture maps an N-point WFTA di-

rectly onto a VLSI circuit. The resultant layout exhibit, little regularity among tile

adders, but it covers a small area and can be generated by computer-aided design tools.

The nesting method invented by Winograd has been proposed as a means of partitioning

a large transformation into several pieces implemented on individual circuits. One advan-

tage of this partitioning approach is that it minimizes the number of multipliers, which

are very expensive. Another advantage is that the netted circuits can be all of the same

type. This reduces the design time and the number of mask sets. The main disadvantage

is that it requires more input/output pins than some other approaches.

The logic design of a 20-point Winograd fourier transformation (WFT) circuit

has keen presented in detail. Data formats, which have an impact on the output accu-

racy and design cost, have been examined. Floorplans for the pre- and post-multipliers

addhitions have been proposed, along with logic diagrams for the adding and subtracting

cells. Overflow detection has been included in the design. Low cost multipliers for two's

coniplement input and output data have been designed. The circuit can be programmed

to compute either 20-point DFTs by itself, or 60-point DFTs when it is connected to four

otlhcr circuits. The circuit contains about 55000 gates and has 196 pins. The whole designl

his been simulated on a computer to verify the correctness of its logic and measure the

accuracy of the output data. A comprehensive set of test vectors has been designed for

verifying the functionality of the circuit samples.

Overall, the routed architecture appears to be attractive for computing moder-

ate size DFTs at very high speeds. The routed architecture can also be combined with

partitioning techniques like the prime factor algorithm for computing larger DFTs. The

possible applications include electronic warfare, image, radar, speech, and sonar process-

43



APPENDIX

A.0 DERIVATION OF WINOGRAD FOURIER TRANSFORM

ALGORITHMS FOR 20 POINTS AND 60 POINTS

In this section we derive Winograd Fourier transformation algorithms (WFTA) for 20 and

60 points. We assume that the reader has a basic understanding of the nesting method

uf \Vinograd [2].

A.1 DERIVATION OF A 20-POINT ALGORITHM

Suppose that one wants to derive an algorithm for computing N-point DFTs. Let

= Vl N2, where NI and N2 are relatively prime. Assume that an algorithm is known for

(oniputing Ni-point DFTs using A, additions and ,III multiplications, and that another

algorithm is known for computing N2-point DFTs using A 2 additions and M 2 multiplica-

tions. Then the NI-point and N2-point algorithms can be "nested" to yield an N-point

,Algorithm requiring MIM 2 multiplications and N2 A1 + M1A 2 additions.

A 20-point algorithm is now derived from the 4- and 5-point algorithms. Let

V = 20, N1 = 4, and N 2 = 5. The resultant 20-point algorithm contains

M1 = MI M2 = 4 • 6 = 24 complex multiplications,

Mid

A = N 2AI + M1 A 2 = 5 " 8 + 4" 17 = 108 complex additions.

With ,VV = 5 and N-2 = 4, it would contain instead

A' = N 2AI + M1,42= 4"17 +6"8 = 116 complex additions

an( be more expensive.

By the Chinese Remainder Theorem (CRT), every integer 0 < n _ N - can

kc [(lpresented by the pair (n,, n2 ) such that n = n mod N and n2 = n rood N2. Taking

20 1 -5. we get the mapping:

0 - (0,0) 1 - (1,1) 2 - (2,2) :3 - (3,3)

4 - (0,4) 5 - (1,0) 6 - (2,1) 7- (:3.2)

S - (0.3) 9 - (1,4) 10 - (2,0) 11 - (3,1)

12 - (G,? 13 - (1.3) 14 - (2,4) 15 - (3,0)

16- (0,1) 17 - (1.2) 18 - (2,3) 19 - (3,4)
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which put into lexicographical order yields: 0, 16, 12, 8, 4, 5, 1, 17, 13, 9, 10, 6, 2, 18, 14,

15, 11, 7, 3, and 19.

Let us define

ao a5 alo a 15

a 16  a, a6  all

ao= a12 a,- a17 a, -2 = a2  a 3 = a7

a 8  a 13  a 18  a 3

a 4  a9  a 14  a19

-I, A.5 Al 0  A15

A16 A, A6 All

Ao= A12 , A 1 1= A17 , A 2  A 2  , A 3 = A 7

,48 A 13  A18  A 3

'44 A9  A 14  A19

and apply the following 4-point algorithm [2] to these vectors:

sI = a0 + +a 2  s 2 = a0 -a 2

S3 = a- +a 3  S4 = a 1 - a 3

S5 = Si + S 3  S6 = S - S3

M1 =W.ss M 2 =W's 6

M 3 =W•S 2  M 4 = i sin v W- S4

s 7 = M 3 + M 4  s8 = M 3 - M 4

Ao = M1  A, = S7

A 2 = M 2  A 3 = S8

wlieie W denotes the 5-point transformation given in Section 2.2, and v = -- \ 20-

point Winograd Fourier transformation algorithm is obtained.

The remaining step consists of computing the values of u and v which appear

in the twiddle factors of the algorithm (u comes from the 5-point, v from the 4-point).
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Beginning with i, the value of b must be calculated using the equation [2]:

(e-w)( ° '1) = (e-N)b. (A.1)

The CRT indicates that (0, 1) corresponds to 16, thus

(e- = (e--) b (A.2)

an([

b = 4. (A.3)

The value of u in the N-point algorithm is equal to b times its value in the N2-point

algorithm (-'):
2r 87r(A)

u = 4(-- = - . (A.4)
5 5

To obtain v, the value of a must be computed using the equation [21:

(e- -)(1, -) (e- a (A..5)

The CRT maps (1,0) into 5, thus

2w, 2w,
(e- (e4)a (A. 6)

a=1. (A.7)

(Consequently, the value of v is unchanged:

v =(A.S)

This completes the derivation of the 20-point WFTA. The resultant algoritlhn is

now simply stated in the same raw format that was input to our simulator for validation.

The additions and multiplications are all on complex data.

A-3



APPENDIX

A.2 20-POINT ALGORITHM

v = -pi/2
u = -8*pi/5

si = aO+alO s6 = aG-alO sli = a5+al5
s2 = a16+a6 s7 = al6-a6 s12 = al+all
s3 = a12+a2 s8 = a12-a2 s13 = al7+a7
s4 = a8+a18 s9 = a8-al8 s14 = a13+a3
s5 = a4+a14 slO =a4-a14 s15 =a9+a19

s16 = a5-a15 s21 = sl+sll s26 = si-sil
s17 = al-all s22 = s2+s12 s27 = s2-s12
s18 = a17-a7 s23 = s3+s13 s28 = s3-s13
s19 = a13-a3 s24 = s4+s14 s29 = s4-s14
s20 = a9-a19 s25 = s5+s15 s30 = sS-s15

s31 = s22+s25 s32 = s22-s25 s33 = s24+s23
s34 = s24-s23 s35 = s31+s33 s36 = s31-s33
s37 = s32+s34 s38 = s35+s21
s39 = s27+s30 s40 = s27-s30 s41 s29+s28
s42 = s29-s28 s43 = s39+s41 s44 = s39-s4l
s45 = s40+s42 s46 = s43+s26
s47 = s7+slO s48 =s7-slO s49 = s9+s8
s50 = s9-s8 s51 s47+s49 s52 = s47-s49
s53 = s48+s50 s54 = s51+s6
s55 = s17+s20 s56 = s17-s20 s57 = s19+s18
s58 = s19-sl8 s59 = s55+s57 s60 = s55-s57
s61 = s56+s58 s62 = s59+s16

mO = s38
ml = ((cos(u)+cos(2*u))/2-l)*s35
m2 = ((cos(u)-cos(2*u))/2)*s36
m3 = j*(sin(u)+sin(2*u))*s32
m4 = j*sin(2*u)*s37
m5 =j*(sin(u)-sin(2*u))*s34
m6 = s46
m7 = ((cos(u)+cos(2*u))12-l)*s43
m8 = ((cos(u)-cos(2*u))12)*s44

A
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m9 =j*(sin(u)+sin(2*u))*s40

mlO =j*sin(2*u)*s45

mil= j*(sin(u)-sin(2*u))*s42
m12 s 54
m1l3 =((cos(u)+cos(2*u))/2-1)*s5l
m14 =((cos(u)-cos(2*u))/2)*s52
m15 =j*(sin(u)+sin(2*u))*s48
m16 =j*sin(2*u)*s53
m17 =j*(sin(u)-sin(2*u))*s50
m18 = j*sin(v)*s62
m19 = j *sin(v) *( (cas u) +cos(2*u) )/2-1) *s59
m20 = j*sin(v)*((cos(u)-cos(2*u))/2)*s60
m2l = j*sin(v)*j*(sin(u)+sin(2*u))*s56
m22 = j*sin(v)*j*sin(2*u)*s6l
m23 = j*sin(v)*j*(sin(u)-sin(2*u))*s58

s63 = mO+ml s64 = s63+m2 s6b =s63-m2
s66 = m3-m4 s67 = m4+m5 s68 =s64+s66
s69 = s64-s66 s70 = s65+s67 s71 = s65-s67
s72 = m6+m7 s73 =s72+m8 s74 = s72-m8
s75 = m9-mlO s76 =mlO+mll s77 =s73+s75
s78 = s73-s75 s79 = s74+s76 s80 =s74-s76
s8l = ml2+m13 s82 = s81+m14 s83 =s81-m14
s84 = ml5-m16 s85 = ml6+ml7 s86 =s82+s84
s87 = s82-s84 s88 = s83+s85 s89 =s83-s85
s90 = ml8+ml9 s9l = s90+m20 s92 s90-m20
s93 = m2l-m22 s94 = m22+m23 s95 s9l+s93
s96 = s9l-s93 s97 = s92+s94 s98 s92-s94

s99 = ml2+m18 s104 =ml2-m18
slQO = s86+s95 s1O5 = s86-s95
slOl = s88+s97 s106 = s88-s97
s102 = s89+s98 s107 = s89-s98
s103 = s87+s96 s108 =s87-s96

AO mO A5 =s99 A1O=m6' A15 s1O4
A16 =s68 Al = siQO A6 = s77 All = s1O5
A12 =s70 A17 = slOl A2 = s79 A7 = s106
A8 =s71 A13 = s102 A18 = s80 A3 = s107

A4 =s69 A9 = s103 A14 = s78 A19 = s108
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A.3 DERIVATION OF A 60-POINT ALGORITHM

With the help of the 20-point algorithm, we now derive an algorithm for 60 = 3- 20 points

which contains M = 3. 24 = 72 complex multiplications and A = 20 .6 + 3. 108 = 444

complex additions. The procedure is exactly the same as for the 20-point algorithm.

Note that the factors 3, 4, and 5, are mutually prime. If they were not, the Winograd

nesting method could not be used.

Using the Chinese Remainder Theorem, the inputs and outputs are reordered as

follows: 0, 21, 42, 3, 24, 45, 6, 27, 48, 9, 30, 51, 12, 33, 54, 15, 36, 57, 18, 39, 40, 1, 22"

13. 4. 25, 46, 7. 28, 49, 10, 31, 52, 13. 34, 55, 16, 37, 58, 19, 20, 41, 2, 23, 44, 5, 26.,17. S.
29. 50, 11, 32, 5:3, 1-1, 35, 56, 17, 38, 59. Let us define the vectors

a,' = (ao a2 1 a 42 a3 a24 a 45 a6 a27 a48 a9 a30 a51 a12 a33 a54 a15 a36 a57 a18 a 39 )

at (a 40 a, a 22 a43 a 4 a 25 a 46 a7 a 28 a 49 al0 a3 1 a 52 a 13 a 34 a55 a 16 a3 7 a 58 a19 )

a!2 = (a 2o a41 a2 a23 a44 a 5 a26 a47 a8 a29 a50 all a32 a53 a14 a35 a56 a1 7 a38 a5 9 )

Al) = (Ao A21 A42 A 3 A24 A45 A6 A27 A48 A9 A30 A 51 A 12 A33 A54 A 15 A36 A57 A 18 :1:39)

A', = (A40 A A22 A43 A4 A25 A 46 A7 A28 A49 Ajo A 31 A 52 A13 A34 A.55 A 16 A3 7 Ass .41))

A' = (A 20 A41 A2 A 23 A44 A5 A26 A 47 A8 A 29 A5o A11 A 32 A53 A 14 A35 A56 A17 A3s .A15

and apply to these vectors the 3-point algorithm [2]

s 1 = a, + a 2  s 2 = a, - a 2  s 3 = s 1 + ao

MO = W . S3  MI = (cos w - I)W -s1  M 2 = 7 sin w .S2

s4 = Mo + MI s5 = s4 + M 2  s6 = s 4 - M 2

Ao = M 0  A 1 = s5  A 2 = s 6

where this time W denotes a 20-point transformation and w A 60-point i\'iuograd

lourier transformation algorithm is obtained.

The new values of u, v, and tv are easily found. Since (0, 1) corresponds to 21,

b is equal to 7, and hence
87r 56ru =7(-- 5 - -5

5 5'
anid 7z

= 7(-r)- .)
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Similarly, (1,0) corresponds to 40, a is equal to 2, and the value of w in the 60-point

algorithm is:

The resultant 60-point Winograd Fourier transform algorithm is given bellow.

Again all the additions and multiplications are on complex data.

A.4 60-POINT ALGORITHM

u = -(56/5)*pi
v = -(7/2)*pi
w = -(4/3)*pi

sO = a40+a20 s20 = a40-a20 s40 = sO+aO
si = al+a41 s21 = al-a4l s41 = sl+a2l
s2 = a22+a2 s22 = a22-a2 s42 = s2+a42
s3 = a43+a23 s23 = a43-a23 s43 = s3+a3
s4 = a4+a44 s24 = a4-a44 s44 = s4+a24
s5 = a25+a5 s25 = a25-a5 s45 = s5+a45
s6 = a46+a26 s26 = a46-a26 s46 = s6+a6
s7 = a7+a47 s27 = a7-a47 s47 = s7+a27
s8 = a28+a8 s28 = a28-a8 s48 = s8+a48
s9 = a49+a29 s29 = a49-a29 s49 =s9+a9
s1O = a1O+a50 s30 = a1O-aSO s50 s1O+a30
sil = a31+all s31 = a31-all s51 s1l+a51
s12 = a52+a32 s32 = a52-a32 s52 =s12+a12
s13 = a13+a53 s33 = a13-a53 s53 =s13+a33
s14 = a34+al4 s34 = a34-a14 s54 =s14+a54
s15 = a55+a35 s35 = a55-a35 s55 =sl5+a15
s16 = a16+a56 s36 = a16-a56 s56 = s16+a36
s17 = a37+a17 s37 = a37-a17 s57 = s17+a57
s18 = a58+a38 s38 = a58-a38 s58 = s18+al8
s19 = a19+a59 s39 = a19-a59 s59 = s19+a39

s6l = s40+s50 s66 = s40-s50 s71 = s45+s55
s62 = s56+s46 s67 = s56-s46 s72 = s4l+s5l
s63 =s52+s42 s68 = s52-s42 s73 = s57+s47
s64 = s48+s58 s69 = s48-s58 s74 = s53+s43
s65 = s44+s54 s70 = s44-s54 s75 = s49+s59
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s76 = s45-s55 s81 = s61+s71 s86 = s61-s71
s77 = s41-s51 s82 = s62+s72 s87 = s62-s72
s78 =s57-s47 s83 = s63+s73 s88 = s63-s73
s79 -s53-s43 s84 =s64+s74 s89 - s64-s74
s80 = s49-s59 s85 = s65+s75 s90 = s65-s75

s91 = s82+s85 s92 = s82-s85 s93 = s84+s83
s94 = s84-s83 s95 = s91+s93 s96 = s9l-s93
s97 = s92+s94 s98 = s95+s81
s99 = s87+s90 slOO =s87-s90 slOl = s89+s88
s102 - s89-s88 s103 =s99+slOl s104 =s99-slOl
s105 =slOO+sl02 s106 = sl03+s86
s107 = s67+s70 s108 = s67-s70 s109 =s69+s68
s11lO s69-s68 sill = slO7+slO9 s112 = siO7-siO9
s113 =slO8+sllO s114 = slli+s66
s115 = s77+s80 s116 = s77-s80 s117 = s79+s78
s118 =s79-s78 s119 = sllS+s117 s120 =sli5-s117
s121 s116+s118 s122 = s119+s76

mO = s98
ml = ((cos(u)+cos(2*u))/2-l)*s95
m2 = ((cos(u)-cos(2*u))/2)*s96
mn3 = j*(sin(u)+sin(2*u))*s92
m4 =j*sin(2*u)*s97
m5 = j*(sin(u)-sin(2*u))*s94
m6 = s1O6

m7 = ((cos(u)+cos(2*u))/2-i)*s103
m8 = ((cos(u)-cos(2*u))/2)*siO4
m9 = j*(sin(u)+sin(2*u))*slOO
mlO = j*sin(2*u)*siO5
mll = j*(sin(u)-sin(2*u))*siO2
m12 = s114
m13 = ((cos(u)+cos(2*u))/2-l)*siii
m14 = ((cos(u)-cos(2*tu))/2)*sli2
mt5 = j*(sin(u)+sin(2*u))*siO8
m16 = j*sin(2*u)*s113
m17 = j*(sin(u)-sin(2*u))*siiO
m18 = j*sin(v)*s122
m19 = j*sin(v)*((cos(u)+cos(2*u))/2-l)*s119
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m20 = j*sin(v)*((cos(u)-cos(2*u))/2)*s120
m21 = j*sin(v)*j*(sin(u)+sin(2*u))*sll6
m22 = j*sin(v)*j*sin(2*u)*sl2l
m23 =j*sin(v)*j*(sin(u)-sin(2*u))*s118

s123 -mO+ml s124 = sl23+m2 s125 = sl23-m2
s126 = iu3-m4 s127 = m4+m5 s128 = s124+sl26
s129 - s124-s126 s130 = s125+sl27 5131 = s125-s127

s132 = m6+m7 s133 =s132+m8 s134 = s132-m8
s135 = m9-mlO s136 =mlO+mll s137 = sl33+sl35
s138 = s133-s135 s139 = sl34+sl36 s140 = s134-s136

s141 = m12+m13 s142 = sl4l+ml4 s143 =sl41-ml4
s144 = m15-m16 s145 = ml6+m17 s146 =sl42+sl44
s147 = s142-s144 s148 = sl43+sl45 s149 = s143-s145
s150 = ml8+m19 s15l = sl50+m20 s152 =s150-m20
s153 = m2l-m22 s154 = m22+m23 s155 =sl5l+sl53
s156 = s15l-sl53 s157 = s152+s154 s158 = s152-s154

s159 = ml2+m18 s164 = m12-m18
s160 = s146+s155 s165 = s146-s155
s161 = s148+s157 s166 = s148-s157
s162 = s149+s158 s167 = s149-s158
s163 = s147+s156 s168 = s147-s156

s169 = sO+slO s174 = sO-slO s179 = s5+s15
s170 = s16+s6 s175 = s16-s6 s180 = sl+sll
sl7l = s12+s2 s176 = sl2-s2 sl81 sl7+s7
s172 - s8+s18 s177 =s8-s18 s182 =s13+s3
s173 = s4+s14 s178 = s4-s14 s183 = s9+sl9

s184 = s5-s15 s189 = s169+sl79 s194 = s169-s179
s185 = si-sli s190 = sl70+sl80 s195 = s170-s180
s186 = s17-s7 sl9l = s171+s181 s196 = sl7l-sl8l
s187 = sl3-s3 s192 = s172+s182 s197 = s172-s182
s188 = s9-s19 s193 = s173+s183 s198 = s173-s183

S199 = s190+s193 s200 = s190-s193 s201 = s192+sl9l
s202 = s192-s191 s203 = sl99+s201 s204 = s199-s201
s205 = s200+s202 s206 = s203+sl89
s207 = s195+s198 s208 = s195-s198 s209 = sl97+sl96
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s210 = s197-s196 s211 = s207+s209 s212 = s207-s209
s213 = s208+s2l0 s214 = s2ll+sl94
s215 = s175+s178 s216 = s175-s178 s217 = sl77+sl76
s218 = s177-s176 s219 = s215+s217 s220 = s215-s217
s221 = s216+s218 s222 = s2l9+sl74
s223 = s185+sl88 s224 = s185-s188 s225 = s187+sl86
s226 = s187-sl86 s227 = s223+s225 s228 = s223-s225
s229 = s224+s226 s230 = s227+sl84

m24 = (cos(w)-l)*s206
m25 = (cos(w)-l)*((Cos(u)+cos(2*u))/2-1)*s203
m26 = (cos(w)-1)*((cos(u)-cos(2*u))/2)*s204
m27 = (cos (w) -1)*j* (sin (u)+sin(2*u) )*s200
m28 = (cos(w)-l)*j*sin(2*u)*s205
m29 = (cos(w)-l)*j*(sin(u)-sin(2*u))*s202
m30 = (cos(w)-l)*s2l4
m3l = (cos(w)-l)*((cos(u)+cos(2*u) )/2-1)*s211
m32 = (cos(w)-1)*((cos(u)-cos(2*u))/2)*s2l2
m33 = (cos(w)-i)*j*(sin(u)+sin(2*u))*s208
m34 = (cos(w)-1)*j*sin(2*u)*s2l3
m35 = (cos(w) -1)*j* (sin(u)-sin(2*u) ) *s~l

m36 = (cos(w)-l)*s222
m37 = (cos(w)-l)*((cos(u)+cos(2*u))/2-1)*s2l9
m38 = (cos(w)-l)*((cos(u)-cos(2*u))/2)*s220
m39 = (cos(w)-l)*j*(sin(u)+sin(2*u))*s2l6
m40 = (cos(w)-l)*j*sin(2*u)*s221
m41 = (cos(w)-l)*j*(sin(u)-sin(2*u))*s218
mn42 = (cos(w)-l)*j*sin(v)*s230
m43 = (cos(w) -i)*j*sin(v) *( (cos(u)+cos(2*u) )/2-1) *s227
m44 = (cos(w)-l) *j*sin(v)*((cos(u)-cos(2*u))/2)*s228
m45 = (cos(w)-1)*j*sin(v)*j*(sin(u)+sin(2*u) )*s224
m46 = (cos(w)-1)*j*sin(v)*j*sin(2*u)*s229
m47 = (cos(w)-1)*j*sin(v)*j*(sin(u)-sin(2*u) )*s226

s231 = m24+m25 s232 = s231+m26 s233 =s231-m26
s234 = m27-m28 s235 = m28+m29 s236 =s232+s234

s237 = s232-s234 s238 = s233+s235 s239 = s233-s235
s240 = m3O+m3l s241 = s240+m32 s242 =s240-m32
s243 = m33-m34 s244 = m34+m35 s245 =s241+s243
s246 = s241-s243 s247 =s242+s244 s248 = s242-s244
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s249 = m36+m37 s250 = s249+m38 s251 = s249-m38
s252 = m39-m40 s253 = m40+m4l s254 = s250+s252

s255 = s250-s252 s256 = s251+s253 s257 = s251-s253
s258 = m42+m43 s259 = s258+m44 s260 =s258-m44
s261 = m45-zn46 s262 = m46+m47 s263 =s259+s261
s264 = s259-s261 s265 = s260+s262 s266 = s260-s262

s267 = m36+m42 s272 = m36-m42
s268 = s254+s263 s273 = s254-s263
s269 = s256+s265 s274 = s256-s265
s270 = s257+s266 s275 = s257-s266
s271 = s255+s264 s276 = s255-s264

s277 = s20+s30 s282 = s20-s30 s287 = s25+s35
s278 = s36+s26 s283 = s36-s26 s288 = s21+s3l
s279 = s32+s22 s284 = s32-s22 s289 = s37+s27
s280 = s28+s38 s285 = s28-s38 s290 = s33+s23
s281 = s24+s34 s286 = s24-s34 s291 = s29+s39

s292 = s25-s35 s297 = s277+s287 s302 = s277-s287
s293 = s21-s31 s298 = s278+s288 s303 = s278-s288
s294 = s37-s27 s299 = s279+s289 s304 = s279-s289
s295 = s33-s23 s300 = s280+s290 s305 = s280-s290
s296 = s29-s39 s301 = s281+s291 s306 = s281-s291

s307 = s298+s301 s308 = s298-s301 s309 = s300+s299
s310 = s300-s299 s311 = s307+s309 s312 = s307-s309
s313 = s308+s3l0 s314 = s3ll+s297

s315 = s303+s306 s316 - s303-s306 s317 = s305+s304
s318 = s305-s304 s319 = s315+s317 s320 = s315-s317
s321 = s316+s318 s322 = s3l9+s302
s323 = s283+s286 s324 = s283-s286 s325 = s285+s284
s326 = s285-s284 s327 = s323+s325 s328 = s323-s325
s329 = s324+s326 s330 = s327+s282
s331 = s293+s296 s332 = s293-s296 s333 = s295+s294
s334 = s295-s294 s335 = s331+s333 s336 = s331-s333
s337 = s332+s334 s338 = s335+s292

m48 = j*sin(w)*s3l4
m49 = j*sin(w)*((cos(u)+cos(2*u))/2-1)*s311
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m5O = j*sin(w)*((cos(u)-cos(2*u))/2)*s3.2
m51 = j*sin(w)*j*(sin(u)+sin(2*u))*s308
m52 - j*sin(w)*j*sin(2*u)*s313
m53 = j*sin(v)*j*(sin(u)-sin(2*u))*s310
m54 = j*sin(w)*s322
m55 = j*sin(w)*((cos(u)+cos(2*u))/2-1)*s3l9
m56 = j*sin(w)*((cos(u)-cos(2*u))/2)*s320
m57 - j*sin(w)*j*(sin(u)+sin(2*u))*s316
m58 - j*sin(w)*j*sin(2*u)*s321
m59 = j*sin(w)*j*(sin(u)-sin(2*u))*s3l8
m60 - j*sin(w)*s330
m61 = j*sin(w)*((cos(u)+cos(2*u))/2-1)*s327

m62 - j*sjn(v)*((cos(u)-cos(2*u))/2)*s328
m63 = j*sin(w)*j*(sin(u)+sin(2*u))*s324
m64 = j*sin(w)*j*sin(2*u)*s329
m65 = j*sin(w)*j*(sin(u)-sin(2*u))*s326
m66 = j*sin(w)*j*sin(v)*s338

m67 = j*sin(w)*j*sin(v)*((cos(u)+cos(2*u))/2-1)*s335

m68 = j*sin(w)*j*sin(v)*((cos(u)-cos(2*u))/2)*s336
m69 = j*sin(w)*j*sin(v)*j*(sin(u)+sin(2*u))*s332
mt7O = j*sin(w)*j*sin(v)*j*sin(2*u)*s337
ni7l = j*sin(w)*j*sin(v)*j*(sin(u)-sin(2*u))*s334

s339 = m48+m49 s340 = s339+m50 s341 =s339-m50
s342 = m~l-m52 s343 = m52+m53 s344 s340+s342

s345 = s340-s342 s346 = s341+s343 s347 = s341-s343

s348 = m54+m55 s349 = s348+m56 s350 s348-m56

s351 = m57-m58 s352 = m58+m59 s353 =s349+s351

s354 = s349-s351 s355 = s350+s352 s356 = s350-s352

s357 - i6O+m61 s358 = s357+m62 5359 =s357-m62

s360 = m63-m64 s361 = m64+m65 s362 -s358+s360
s363 - s358-s360 s364 = s359+s361 s365 = s359-s361

s366 = m66+m67 s367 = s366+m68 s368 =s366-m68

s369 = m69-m70 s370 =m70+m7l s371 =s367+s369
s372 = s367-s369 s373 = s368+s370 s374 = s368-s370

s375 = m60+m66 s380 = m60-m66

s376 = s362+s371 s381 = s362-s371

s377 = s364+s373 s382 = s364-s373
s378 = s365+s374 s383 = s365-s374
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s379 = s363+s372 s384 = s363-s372

s385 = mO+m24 s405 = s385+m48 s425 = s385-m48
s386 = s160+s268 s406 = s386+s376 s426 = s386-s376

s387 = s139+s247 s407 = s387+s355 s427 = s387-s355

s388 = s167+s275 s408 = s388+s383 s428 = s388-s383
s389 = s129+s237 s409 = s389+s345 s429 = s389-s345

s390 = s159+s267 s410 = s390+s375 s430 = s390-s375

s391 = s137+s245 s411 = s391+s353 s431 = s391-s353

s392 = s166+s274 s412 = s392+s382 s432 = s392-s382

s393 = s131+s239 s413 = s393+s347 s433 = s393-s347

s394 = s163+s271 s414 = s394+s379 s434 = s394-s379

s395 = m6+m30 s415 = s395+m54 s435 = s395-m54

s396 = s165+s273 s416 = s396+s381 s436 = s396-s38l

s397 = s130+s238 s417 = s397+s346 s437 = s397-s346

s398 = s162+s270 s418 = s398+s378 s438 = s398-s378

s399 = s138+s246 s419 = s399+s354 s439 = s399-s354

s400 = sl64+s272 s420 = s4 00+s380 s440 = s400-s380

s401 = s128+s236 s421 = s401+s344 s441 = s401-s344

s402 = s161+s269 s422 = s402+s377 s442 = s402-s377

s403 = s140+s248 s423 = s403+s356 s443 = s403-s356

s404 = s168+s276 s424 = s404+s384 s444 = s404-s384

AO = mO A40 = s405 A20 = s425

A21 = s160 Al = s406 A41 = s426

A42 = s139 A22 = s407 A2 = s427

A3 = s167 A43 = s408 A23 = s428

A24 = s129 A4 = s409 A44 = s429

A45 = s159 A25 = s410 A5 = s430

A6 = s137 A46 = s411 A26 = s431

A27 = s166 A7 = s412 A47 = s432

A48 = s131 A28 = s413 A8 = s433

A9 = s163 A49 = s414 A29 = s434

A30 = m6 AlO = s415 ASO = s435

A51 = s165 A31 = s416 All = s436

A12 = s130 A52 = s417 A32 = s437

A33 = s162 A13 = s418 A53 = s438

A54 = s138 A34 = s419 A14 = s439

A15 = s164 A55 = s420 A35 = s440

A36 = s128 A16 = s421 A56 = s441
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A57 =s16l A37 = s422 A17 = s442
A18 = s140 A58 =s423 A38 = s443
A39 = s168 A19 = s424 A59 = s444
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B.0 TWIDDLE FACTORS

Tables 6-13 of this appendix present the theoretical values and 12-bit approximations of

the twiddle factors in the sets TFO, TF1, TF2, and TF3. Each 12-bit value is encoded in

two's complement notation with a binary point after the third bit. The quantization error

does not exceed 0.076%.

The bits of the twiddle factors TF1, TF2, and TF3 must be inverted before being

stored into the multipliers described in this document. The bits of TFO need not be

inverted. The least significant bit must be stored into the first multiplier stage, where the

rnhultiplicands enter, and the most significant bit into the last stage, where the product

exits.
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Table 6: Twiddle factors in TFO (real side)..

No Theoretical Value Stored Value
12 Bits Decimal

MSB LSB
0 1.00000000000000 (001000000000) 1.000000000
1 -1.25000000000000 (110110000000) -1.250000000
2 0.55901699437495 (000100011110) 0.558593750
3 1.53884176858763 (001100010100) 1.539062500

4 0.58778525229247 (000100101101) 0.587890625
5 0.36327126400268 (000010111010) 0.363281250
6 1.00000000000000 (001000000000) 1.000000000
7 -1.25000000000000 (110110000000) -1.25000000u
8 0.55901699437495 (000100011110) 0.558593750
9 1.53884176858763 (001100010100) 1.539062500

10 0.58778525229247 (000100101101) 0.587890625

11 0.36327126400268 (000010111010) 0.363281250
12 1.00000000000000 (001000000000) 1.000000000
1:3 -1.25000000000000 (110110000000) -1.250000000
14 0.55901699437495 (000100011110) 0.558593750
15 1.53884176858763 (001100010100) 1.539062500

16 0.58778525229247 (000100101101) 0.587890625
17 0.36327126400268 (000010111010) 0.363281250
is -1.00000000000000 (111000000000) -1.000000000
19 1.25000000000000 (001010000000) 1.250000000
20 -0.55901699437495 (111011100010) -0.558593750
21 1.53884176858763 (001100010100) 1.539062500

22 0.58778525229247 (000100101101) 0.587890625
23 0.36327126400268 (000010111010) 0.363281250
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Table 7: Twiddle factors in TFO (imaginary side)..

No Theoretical Value Stored Value
12 Bits Decimal

MSB LSB
0 1.00000000000000 (001000000000) 1.000000000
1 -1.25000000000000 (110110000000) -1.250000000
2 0.55901699437495 (000100011110) 0.558593750
3 -1.,m,'4176858763 (110011101100) -1.539062500

4 -0."S' 3525229247 (111011010011) -0.587890625

5 0 36327126400268 (111101000110) -0.363281250
6 1.00000000000000 (001000000000) 1.000000000
7 -1.25000000000000 (110110000000) -1.250000000
8 0.55901699437495 (000100011110) 0.558593750
9 -1.53884176858763 (110011101100) -1.539062500

10 -0.58778525229247 (111011010011) -0.587890625

11 -0.36327126400268 (111101000110) -0.363281250
12 1.00000000000000 (001000000000) 1.000000000
13 -1.25000000000000 (110110000000) -1.250000000
14 0.55901699437495 (000100011110) 0.558593750
15 -1.53884176858763 (110011101100) -1.539062500

16 -0.58778525229247 (111011010011) -0.587890625
17 -0.36327126400268 (111101000110) -0.363281250

is 1.00000000000000 (001000000000) 1.000000000
19 -1.25000000000000 (110110000000) -1.250000000
20 0.55901699437495 (000100011110) 0.558593750
21 1.53884176858763 (001100010100) 1.539062500
22 0.58778525229247 (000100101101) 0.587890625

23 0.36327126400268 (000010111010) 0.363281250
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Table 8: Twiddle factors in TF1 (real side)..

No Theoretical Value Stored Value
12 Bits Decimal

MSB LSB
0 1.00000000000000 (001000000000) 1.000000000
1 -1.25000000000000 (110110000000) -1.250000000
2 -0.55901699437495 (111011100010) -0.558593750
3 -0.36327126400268 (111101000110) -0.363281250
4 -0.95105651629515 (111000011001) -0.951171875
5 1.53884176858762 (001100010100) 1.539062500
6 1.00000000000000 (001000000000) 1.000000000
7 -1.25000000000000 (110110000000) -1.250000000
8 -0.55901699437195 (111011100010) -0.558593750
9 -0.3632712640026S (111101000110) -0.363281250
10 -0.95105651629515 (111000011001) -0.951171875
11 1.53884176858762 (001100010100) 1.539062500
12 1.00000000000000 (001000000000) 1.000000000
13 -1.25000000000000 (110110000000) -1.250000000

14 -0.55901699437495 (111011100010) -0.558593750
15 -0.36327126400268 (111101000110) -0.363281250
16 -0.95105651629515 (111000011001) -0.951171875
17 1.53884176858762 (001100010100) 1.539062500
18 1.00000000000000 (001000000000) 1.000000000
19 -1.25000000000000 (110110000000) -1.250000000
20 -0.55901699437495 (111011100010) -0.558593750
21 0.36327126400268 (000010111010) 0.363281250
22 0.95105651629515 (000111100111) 0.951171875
23 -1.53884176858762 (110011101100) -1.o39062500
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Table 9: Twiddle factors in TF1 (imaginary side)..

No Theoretical Value Stored Value
12 Bits Decimal

MSB LSB
0 1.00000000000000 (001000000000) 1.000000000
1 -1.25000000000000 (110110000000) -1.250000000

2 -0.55901699437495 (111011100010) -0.558593750
3 0.36327126400268 (000010111010) 0.363281250
4 0.95105651629515 (000111100111) 0.951171875
5 -1.53884176858762 (110011101100) -1.539062500

6 1.00000000000000 (001000000000) 1.000000000
7 -1.25000000000000 (110110000000) -1.250000000

8 -0.55901699437495 (111011100010) -0.558593750
9 0.36327126400268 (000010111010) 0.363281250

10 0.95105651629515 (000111100111) 0.951171875
11 -1.53884176858762 (110011101100) -1.539062500
12 1.00000000000000 (001000000000) 1.000000000
13 -1.25000000000000 (110110000000) -1.250000000
14 -0.55901699437495 (111011100010) -0.558593750
15 0.36327126400268 (000010111010) 0.363281250

16 0.95105651629515 (000111100111) 0.951171875
17 -1.53884176858762 (110011101100) -1.539062500
is -1.00000000000000 (111000000000) -1.000000000

19 1.25000000000000 (001010000000) 1.250000000
20 0.55901699437495 (000100011110) 0.558593750
21 0.36327126400268 (000010111010) 0.363281250
22 0.95105651629515 (000111100111) 0.951171875

23 -1.53884176858762 (110011101100) -1.539062500
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Table 10: Twiddle factors in TF2 (real side)..

No Theoretical Value Stored Value
12 Bits Decimal

MSB LSB
0 -1.50000000000000 (110100000000) -1.500000000

1 1.87500000000000 (001111000000) 1.875000000

2 0.83852549156242 (000110101101) 0.837890625
3 0.54490689600402 (000100010111) 0.544921875
4 1.42658477444273 (001011011010) 1.425781250
5 -2.30826265288144 (101101100010) -2.308593750

6 -1.50000000000000 (110100000000) -1.500000000
7 1.87500000000000 (001111000000) 1.875000000
8 0.83852549156242 (000110101101) 0.837890625
9 0.54490689600402 (000100010111) 0.544921875

10 1.42658477444273 (001011011010) 1.425781250
11 -2.30826265288144 (101101100010) -2.308593750

12 -1.50000000000000 (110100000000) -1.500000000
13 1.87500000000000 (001111000000) 1.875000000

14 0.83852549156242 (000110101101) 0.837890625
15 0.54490689600402 (000100010111) 0.544921875

16 1.42658477444273 (001011011010) 1.425781250
17 -2.30826265288144 (101101100010) -2.308593750
18 -1.50000000000000 (110100000000) -1.500000000
19 1.87500000000000 (001111000000) 1.875000000

20 0.83852549156242 (000110101101) 0.837890625
21 -0.54490689600402 (111011101001) -0.544921875

22 -1.42658477444273 (110100100110) -1.425781250
23 2.30826265288144 (010010011110) 2.308593750
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Table 11: Twiddle factors in TF2 (imaginary side)..

No Theoretical Value Stored Value
12 Bits Decimal

MSB LSB
0 -1.50000000000000 (110100000000) -1.500000000
1 1.87500000000000 (001111000000) 1.875000000
2 0.83852549156242 (000110101101) 0.837890625
3 -0.54490689600402 (111011101001) -0.544921875
4 -1.42658477444273 (110100100110) -1.425781250
5 2.30826265288144 (010010011110) 2.308593750
6 -1.50000000000000 (110100000000) -1.500000000
7 1.87500000000000 (001111000000) 1.875000000
8 0.83852549156242 (000110101101) 0.837890625
9 -0.54490689600402 (111011101001) -0.544921875

10 -1.42658477444273 (110100100110) -1.425781250
11 2.30826265288144 (010010011110) 2.308593750
12 -1.50000000000000 (110100000000) -1.500000000
13 1.87500000000000 (001111000000) 1.875000000
14 0.83852549156242 (000110101101) 0.837890625
15 -0.54490689600402 (111011101001) -0.544921875
16 -1.42658477444273 (110100100110) -1.425781250
17 2.30826265288144 (010010011110) 2.308593750
IS 1.50000000000000 (001100000000) 1.500000000
19 -1.87500000000000 (110001000000) -1.875000000
20 -0.83852549156242 (111001010011) -0.837890625
21 -0.54490689600402 (111011101001) -0.544921875
22 -1.42658477444273 (110100100110) -1.425781250
23 2.30626265288144 (010010011110) 2.308593750
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Table 12: Twiddle factors in TF3 (real side)..

No Theoretical Value Stored Value
12 Bits Decimal

MSB LSB
0 -0.86602540378444 (111001000101) -0.865234375
1 1.08253175473055 (001000101010) 1.082031250
2 0.48412291827593 (000011111000) 0.484375000
3 0.31460214309120 (000010100001) 0.314453125
4 0.82363910354633 (000110100110) 0.824218750
5 -1.33267606400146 (110101010110) -1.332031250
6 -0.86602540378444 (111001000101) -0.865234375
7 1.08253175473055 (001000101010) 1.082031250

8 0.48412291827593 (000011111000) 0.484375000
9 0.31460214309120 (000010100001) 0.314453125

10 0.82363910354633 (000110100110) 0.824218750
11 -1.33267606400146 (110101010110) -1.332031250
12 -0.86602540378444 (111001000101) -0.865234375
13 1.08253175473055 (001000101010) 1.082031250
14 0.48412291827593 (000011111000) 0.484375000
15 0.31460214309120 (000010100001) 0.314453125
16 0.82363910354633 (000110100110) 0.824218750
17 -1.33267606400146 (110101010110) -1.332031250
18 -0.86602540378444 (111001000101) -0.865234375
19 1.08253175473055 (001000101010) 1.082031250
20 0.48412291827593 (000011111000) 0.484375000

21 -0.31460214309120 (111101011111) -0.314453125
22 -0.82363910354633 (111001011010) -0.824218750
23 1.33267606400146 (001010101010) 1.332031250
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Table 13: Twiddle factors in TF3 (imaginary side)..

No Theoretical Value Stored Value
12 Bits Decimal

MSB LSB
0 0.86602540378444 (000110111011) 0.865234375
1 -1.08253175473055 (110111010110) -1.082031250
2 -0.48412291827593 (111100001000) -0.484375000
3 0.31460214309120 (000010100001) 0.314453125
4 0.82363910354633 (000110100110) 0.824218750
5 -1.33267606400146 (110101010110) -1.332031250
6 0.86602540378444 (000110111011) 0.865234375
7 -1.08253175473055 (110111010110) -1.082031250
8 -0.48412291827593 (111100001000) -0.484375000
9 0.31460214309120 (000010100001) 0.314453125
10 0.82363910354633 (000110100110) 0.824218750
11 -1.33267606400146 (110101010110) -1.332031250
12 0.86602540378444 (000110111011) 0.865234375
13 -1.08253175473055 (110111010110) -1.082031250
14 -0.48412291827593 (111100001000) -0.484375000
15 0.31460214309120 (000010100001) 0.314453125
16 0.82363910354633 (000110100110) 0.824218750
17 -1.33267606400146 (110101010110) -1.332031250
18 -0.86602540378444 (111001000101) -0.865234375
19 1.08253175473055 (001000101010) 1.082031250
20 0.48412291827593 (000011111000) 0.484375000
21 0.31460214309120 (000010100001) 0.314453125
22 0.82363910354633 (000110100110) 0.824218750
23 -1.33267606400146 (110101010110) -1.332031250

B-9



APPENDIX

C.0 LOGIC SYMBOLS

- Inverter f Half adder

:2-input And
~Full adder

2E3o- 2-input Nand

...........

2-input Or - 2-to-1 Mux, non-inverting

ID-

2-input Xor ........."
3-to-1 Mux, inverting

E 3-input Nand o°.

3- -~u~tr4-to-1 Mux, non-inverting

~3-input Nand

Flip-flop Addition

Subtraction
20-point
transformation

Figure 25: Logic symbols used throughout this document.
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